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Calculus 4c-4 Introduction

Introduction

Here follows the continuation of a collection of examples from Calculus 4c-1, Systems of differential
systems. The reader is also referred to Calculus 4b and to Complex Functions.

We focus in particular on the linear differential equations of second order of variable coefficients,
although the amount of examples is far from exhausting.

It should no longer be necessary rigourously to use the ADIC-model, described in Calculus 1c¢ and
Calculus 2¢, because we now assume that the reader can do this himself.

Even if T have tried to be careful about this text, it is impossible to avoid errors, in particular in the
first edition. It is my hope that the reader will show some understanding of my situation.

Leif Mejlbro
23rd May 2008
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Calculus 4c-4 Linear differential equations of second order with variable coefficients

1 Linear differential equations of second order with variable
coeflicients

Example 1.1 Solve the differential equation

2z d
t(t—l)ﬁfﬂd—f—x:t

in the interval |1, 00[, given that the corresponding homogeneous equation has the solution x = t.

There are here several variants of solutions. We shall here produce three of them.

1) Norm the equation and apply a solution formula.

Since t(t — 1) > 0 in |1, 0], we get by norming, i.e. division by the coefficients of the term of
second order,

A2z 1 dz 1 1 1

w i eyt T =

Hence

Today’s job market values ambitious, innovative, perceptive team players. Swedish
universities foster these qualities through a forward-thinking culture where you’re
close to the latest ideas and global trends.
Whatever your career goals may be, studying in Sweden will give you valuable
Swedish Institute ~~ skills and a competitive advantage for your future. www.studyinsweden.se
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Calculus 4c-4

Linear differential equations of second order with variable coefficients

Since ¢4 (t) = t, it follows from the solution formula that the complete solution is

- [ o

-1

1 1
= t/ m {02 + 5162} dt + eyt (decompose)

1 1 1
= —t di et tet [ (g -2 - ) d
/ Fatte /(t—l t t?)
t—1
= §tln(t—1)—|—clt+02{tln( ; >—|—1}

2) Inspection.
ments that

2.’E
t = “tmgg*tggx_”%RUZp (2t— nz } {

_ % {t(t_1)‘fl_f}_{(t_1)‘;_f+1-x} — % {t(t— 1)‘2—? - 1):1:}

£ - b} -2 {03}

By integration of the equation

£{ee-ni )

we get

d /x 1
204 el ad :_2
£2(t 1)dt(t) S+ e,

hence by a decomposition,

d(m)_l 1 Yo 1 1 1
dt\t) 2 t—1" 7 2it-1) 2

Since t > 1, it follows by another integration,

1 t—1 1
_:§1n(t—1)+61+62{ln<7> +Z},

hence

1 t—1
x = Etln(t—l)—i—clt—i—cQ {tln <T> +1} for t > 1.

1
{smarter = 5(152 -1+ ég] ,

N 1
el b
t—1 " Alt—1

e1(t) {/ m {62 + /wl(t)ﬁ(t)u(t) dt} dt + cl}

—dt:| dt+61}

(Elegant, though a difficult method). When ¢ > 1 it follows by some small rearrange-

der dx
2t—1 t— —
=D }
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Calculus 4c-4 Linear differential equations of second order with variable coefficients

3) The standard method. We first norm the equation

d2x+ 1 dx 1 1 for t > 1
- — T .
a2 Tr—1dt -1 t-1 °

Given that y(t) = t is a solution of the homogeneous equation, where y; (¢) # 0 for ¢t > 1, a linearly
independent solution of the homogeneous equation can be computed by means of a formula,

p(l) = yl(t)/mexp<— fl(t)dt)dt:t/t%exp(—/t‘f—tl)dt
" %-%dtzt/{%—%—%}dt:tln(%)—|—1.

Then a particular solution is also given by a standard formula,

Wi (t) /W2(t)
1) yolt) = i (t dt + yo(t dt
1) ) = n(t) [ Fh de (o) [ TS ar
where
t—1
y1(t)  ya(t) t tln|——)+1 . 1
t—1 1 t—1 t—1’
() bt 1 (=) —
MO0 o () +
1
t t—1 1
p— - — 1 —
") Lot 1 t—1 n( t ) t—1
t1 n( t )+t—1
and
t 0
Wa(t) = S
2 N
t—1

Then insert into (1) and we obtain the particular solution

Yo(t) = wi() / VIZ}((;; dt +yo(t) / WW/,Q((;)) dt

-1
—t/(tln(t—l)—tlnt+t)dt+{tln (%) +1}/tdt
t? t—1 t2 1 1 t? t—1
1, t t2—1+1 1, & 1
- L t)dt=—Zt* 4= t+14+ —— —t|dt
2+2/< t—1 > 2+2/(++t—1 )

+ %{t (- 1)} = %tln(t ~1).

I
|
~+

I

\

|
-

I
\
|
~
¥
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Calculus 4c-4 Linear differential equations of second order with variable coefficients

Summing up we get the complete solution
1 t—1
a::itln(t—l)—&—clt—ch tln — +15, t>1,

where ¢y and ¢y are arbitrary constants.

Example 1.2 Find the complete solution of the following differential equation, given that ¢1(t) =
cosht is a solution of the corresponding homogeneous differential equation,

A2z

d
W—tanht~d—f—(1—tanh2t)m:et, teR.

Here again there are several variants.

1) The equation is already normed, so we can immediately apply the solution formula,

2(t) = o1 (t) {/m (01 +/g01(t)§2(t)u(t) dt) dt+c2}

where ¢1(t) = cosht, u(t) = et and

1
cosht’

Q) = eXp(*/tanhtdt) =

This gives us

cosht cosht
) = ht _— tdt ) dt
=(?) o8 {/ cosh? t (Cl N / cosht ¢ > + 02}

1 t
= cosht{/ COSht(Cl +e )dt} + cocosht

e2t +1

= c¢ycosht + 2¢; cosht - Arctan(e?) 4 cosht - In(1 + e2*).

2 t 2 2t
= 02cosht+clcosht/Ldthcosht/e—dt
e2t +1

2) If we put & = cosht -y, then
dx dy

U :coshtE + sinht -y,
d? d? d
de = cosht Eg + 2sinht - d—:l; + cosht -y,

hence by insertion into the differential equation,

¢ d*z tanh ¢ dx 1
e = — —tanht— — ———
d? dt  cosh?t

d%y dy dy sinh?t y
= ht — 4 2sinht — ht-y—sinht — — —
o8 dt? +asin dt +cos g dt  cosht 4 cosht

d%y dy d dy
= ht- —= +sinht- — = — ht-— .
cosht g2 sinh ¢ 7 7 {cos t 7
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Calculus 4c-4

Linear differential equations of second order with variable coefficients

Then by an integration,

dy

cosht - o =el + ¢,
thus
dy € o

2¢et

By another integration,

v= cosht

hence

dt ~ cosht + cosht e + et

+ 2¢

9 -

et 2¢%t

€2t—|—1:62t+1

= In(1 + ") 4 2¢5 Arctan(e?) + 1,

x = cosht-In(1+ e*) 4 ¢y cosht + ¢y cosht - Arctan(e?).

www.job.oticon.dk

10

+262'

et

e2t +1°

oticon
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Calculus 4c-4

Linear differential equations of second order with variable coefficients

3) We rearrange the equation by inspection in the following way,

t

e =

d’z
dat?
d’z
a2

d
— ht
7 {cos

dt  dt

{t nht- d—+ d(tanht)~x}

d (d inh¢
{tanht x}=— {_x S x}

[

dt | dt cosht

dz d
cosht dt d cosht Y

d
ht. —
{COS b cosht }

Then by an integration,

ht- d( )=t
€08 di \cosht) ¢ T

thus

T

2¢oet

% (cosh t

) 2€2t

T 1t e T4e2t

Finally, by another integration,

x = cosht - In(1 4 e*) 4 2¢o cosht - Arctan(e) + ¢1 cosh t.

4) By the standard solution formula,

where

pa(1)

Wi (t)

Wa(t)

= o1 (

Wi (t)
t)/ W) dt +

Wa(t)
t)/ WD) dt

1 cosht 2¢et
t _ — t)dt ) dt = ht dt = ht | ———dt
901( )/ <P1(t)2 P ( /fl( ) ) o8 / cosh? ¢ o8 / et +1

2 cosht - Arctan(e'),

/

cosht

sinh ¢

Y1 P2

©1 ¥

cosht 2cosht - Arctan(et)
sinht  2sinht - Arctan(e’) +2cosht - ———
et +1
0
= cosht,
1
= —2cosht - Arctan(e') - €,
= cosht e’
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Calculus 4c-4 Linear differential equations of second order with variable coefficients

By insertion,

—2cosht - Arctan(e’)
cosht

cosht ,
e
cosht

dt

0(t) = cosht /

= —2cosht / Arctan udu + 2 cosht - e’ Arctan(e’)

e' dt +2cosht - Arctan(e’) /

ot
= —2cosht |e'Arctan(e’) — / £ at| +2cosht - e - Arctan(e')
14 e?t

et o
= 2cosht [ ——— dt =cosht-In(1+e*").

1+ e2t
Finally, we add the complete solution of the homogeneous equation to get

x = cosht - In(1 + e?*) 4+ ¢; cosht + ¢y cosht - Arctan(e?).

Example 1.3 Find the complete solution of the following differential equation, given that p1(t) = sint
s a solution of the corresponding homogeneous differential equation,

d? d
Wfthanﬁd—erSx:?)tant, te}—

7r7r{
2721

Again there are several possible methods of solutions:

1) The equation is already normed, so we can immediately apply the solution formula,

2(t) = o1 (t) {/m <c1 +/g01(t)§2(t)u(t) dt> dt+02},

where ¢1(t) = sint, u(t) = 3tant and

int
Q(t) = exp <2/£dt> = cos? t.
cost
Then we get for ¢ # 0,
. 1 . 9
r = sint ———-|(ca+ [ sint-cos”t-3tantdt | di + co
sin” t cos? t
) 2
t t 1
= sint{cl/wdt—l—/f(/3Sin2t~costdt)dt}—l—czsint
sin® tcos? t sin” t cos?

't/ LI dt+'t/smtdt+ int
= ¢ sin —— sin o Sin
! cos?t  sin?t cos?t 2

= c¢ysint(tant — cott) + tant + cosint

. sin®t — cos? ¢
= tant+cosint+c¢ - —
cost

cos 2t

= tant+ cosint — ¢y .
cost

By a continuous extension (or just checking) it follows that the final result holds in all of }—g % [

9
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Calculus 4c-4 Linear differential equations of second order with variable coefficients

2) If we put & = ¢1(t) -y = sint - y, we get

dx - dy n ¢
— =sint- — + cost-
dt dt v
d? 2 d
Wf =sint - dTg+2cost- d—ZtJ—sint-y,
which we put into the equation,
d’x dx
3tant = W—2tantE+3x
d?y dy sin?t dy
= sint-— +2cost-— —sint -y —
T a YT Voot
d?y cos?t —sin?t dy
= 1 t ¢ —_— 2 —_—— * —
SET - cost dt
dy

This is a differential equation of first order in

d (dy cos 2t dy 3
< 4 YW_ 2 iz
dt ( ) sin2t dt  cost’ 70

dt’

dt

— —2sint-y+ 3sint -y

When t # 0 we get by division by sint that

This equation is most elegantly solved by multiplying by sin? 2¢, because we then can write the

d d
resulting left hand side in the form 7 sin? 2t il . We shall here only use the well-known solution

dt

formula. The homogeneous equation has the solution

4 1

sin?2t  cos?tsin’t

Then we get by the formula,

/
4c;,

sint

dy 1 - 3/ cos? t - sin® ¢ @t 4¢, n sin® ¢ N
- = @ c e = =
dt — cos?tsin’t | 7 cost sinh?2¢  cos?t-sin®t  sin 2t

By another integration,

1
y = —2cycot 2t + —— + ¢4, t #0,
cost

hence

cos?t —sin?t sin?

x =tant + ¢y sint + 2¢h —————— -sint = tant + ¢y sint + ¢y -
2sint - cost

3) We compute for ¢ # 0

po(t) = (pl/ﬁ exp(—/fl(t) dt)dt:sin/sijgt exp <+2/CO

1 cos?t + sin?t
sin“t - cos?t sin“t - cos?t

1 1
= sint/{ +—2t}dtsint{tantcott}

cos?t  sin

sin?t — cos2t  sin?t — cos?t

= sint- - =
cost-sint cost

t —cos?t
cost

sinf dt> dt
St

cos2t’

Download free books at BookBooN.com
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Calculus 4c-4 Linear differential equations of second order with variable coefficients
Then
22, 2
01 o sint sin” ¢ ;os t
W(t) = = cost = 3sin
®) / / . sin® ¢ cos?t
Y1 Pa cost 3sint+ 5
cos*t
L 5 sint  sin®t 4 2sin®tcos?t +cos*t  (sin?t 4 cos?t)?
= 2sin“t+cos“t + = =
cos?t cos?t cos2t

1
cos?t’

Si.

Swedish Institute
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Calculus 4c-4

Linear differential equations of second order with variable coefficients

Thus a particular solution is given by

ealt) [

sin?t — cos? t

o1 (t)ult) pa(t)ult)
W0 “‘%w/)3w>d

/sint-cos3t -3tantdt —sint/

/381n2tcostdtfsint/3(1fQCoszt)sintdt

xo(t) t

) 2
sin“t — cos”t
= 7 cos?t-3tantdt
cost cost
sin?t — cos? ¢

cost

L2 2
sin“t — cos“ ¢
S .sin®t +sint{3cost — 2cos’ t}
cost

sint 9

{sin*t — cos?sin®t + 3cos®t — 2cos? t}

cost
tant{(1 — cos®t)? — cos? (1 — cos®t) + 3cos*t — 2cos* t}
tant{1 — 2cos®t + cos* t — cos® t + cos® t + 3cos? t — 2 cos? t}

tant.

Finally, the complete solution is

. cos? —sint
r=tant+cysint +cg - ——
cost

Example 1.4 Find the complete solution of the following differential equation, given that 1 (t)

Vit

cost is a solution of the corresponding homogeneous differential equation,

2 — -
+(e-1

Here we shall give four different solution methods.

ple

— ¢
atz "t )x vt

1) Since we have the factor v/# in the denominator, it is quite reasonable to put z = % and then
derive a differential equation instead in y. We find
dr. 1 dy 1
it idt i
d2x_1d2y 1 dy 3 1
a2 T i d2  waidt o devi

Then by putting these expressions into the differential equation,

Pz dx

1
_ “r (e 2
Vit o=t dt2+tdt+<t 4>x
B dy 31 dy 1
_t\fdtzxf +4\[+x/¥ 2\[4—\/3/ \[

%y
VE—L it
\fdt2+\fy,

Download free books at BookBooN.com
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Calculus 4c-4 Linear differential equations of second order with variable coefficients

which by a division by tv/% is reduced to

d2

w2 +y—1

The complete solution is

y =1+ cycost+ cysint,

hence
1 cost sint
T=—44+c—— +co—.
ViV T
2) When we norm the equation, we get
d*z N 1 dx N 1 1 f=0
— + - — — |Jx=— .
izt dt 42 Vit
Now,

o) e ([ 1) -

1
and ¢4 (t) = 7 cost and u(t) =

We therefore formally get for cost # 0 that

L
L
o) = 010 ([ s (AOR0u0 @+ ) + o)

= icost /L 1 ch/&St t idt dt +c
N t cos?t t | Vit Vit !

= 1cost(/ ! {02—|—s1nt}dt)+cl cost
t cos? NG
1 cost 1
= CQ~7E~cost~tant+c1 \/_ \/_ -cost - cost
1 cost sint
R AR

3) We get by norming the equation,

Pz 1dx 1 1
— +—+(1->)z=—

izt dt 4¢2 NG
hence
1 cost t dt
t) = t t)dt)dt = — — [ —)dt
ealt) = o0 [ et [Aeana="3 [ oo (- [F)
_ cost dt cost fon { — sint
Vi) cos?t W\t OV

Download free books at BookBooN.com
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Calculus 4c-4 Linear differential equations of second order with variable coefficients

The Wronski determinant is

cost sint cost  sint
W) =| 1 P2 = R vVt o N
Tl @b | | sint lcost cost 1sint | 7| sint  cost | T ¢
Vi 2t Vi 2 Vit t
Then a particular solution is
() sint [ cost ; 1 g — cost [ sint £ 1
xo = — - . t. =
ORI Vil vt
sint fdb — b Slnt+COSt 1
= oS sin = = —.
Vi x/- Vi ViVt
Summing up the complete solution is
1 cost sint
r=—4c——+co——.
Vi Ve TR
4) If we put ) L cost, we get
we put x =y - =1y —=cost, we ge
p Y-¥1 Y \/1_5 g
dx  cost dy (cost N sint)
dt — \/t dt 20/t Vit
d*z  cost d*y (cost N QSint> dy (sint N 3cost N sint cost>
dt? Vi dt? tVt Vi o) dt 20/t A2t 20t Vi

hence by insertion,

d’y dy
tVt = tVt-cost- —= — (Vtcost + 2t\/tsint)—

dt? dt
+ \/l_fsmt+3it7t\/fcost +\/1_fcostd—y
i Vi Y dt
cost cost
+\/Zs1nt + tﬁcost——)
<2Vf' >3/ < i)

d?y d
= t\/z cost - 72 7215\/1? sint - d?:

cost
A multiplication by reduces this equation to

tVt

d (dy . dy d 5, dy
cost = cos®t - o (dt) 2sint - cost 2 d {cos tdt ,

hence by an integration,

d
cothd—gtJ =sint + co.

Download free books at BookBooN.com
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Calculus 4c-4 Linear differential equations of second order with variable coefficients

Then [for cost # 0],

dy _ sint co d {

dt — cos?t  cost  dt

1
— +02tant},
cost

thus
1
Y= —+cl+c2tant.
cost

Finally, we get

cost 1 cost sint

':—+C'—+C'
NV RV AR
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Calculus 4c-4 Linear differential equations of second order with variable coefficients

Example 1.5 Find the complete solution of the following differential equation, given that ¢1(t) =
t - cosht is a solution of the corresponding homogeneous differential equation,

t2 =2 2t — — (1 — 2)x =13, teR,.

Here we have at least four different solution methods.
1) Intuition. The structure of o1 (t) invites one to put x =t -y. Then

dx dy d’z d?y dy
— =t —— =t 42—,
tYooe GE T Tt

If these results are put into the differential equation, we get

d?z dx d’x dy dy
2= PP o (2=t = 422 L 22 L oty — Ry + 2
2 g )@ az T ar YTty
d2y
= 2 — —t%y.
dt2

If we divide by #3 > 0, then
d*y

dt? =1

which is immediately solved,
y = —1 + ¢y cosht + cosinht.
Then
x=1t-y=—t+cit-cosht + cot - sinh t.

2) Solution formula. We first norm the equation,

Since ¢1(t) =t - cosht and u(t) = t, it follows that

) /; (o1 (D) u(t) dt + c2) +
= Y1 <p1(t)29(t) ®1 2 1
=t cosht{L <c —|—/t cosht 1 tdt) dt}—i—c t-cosht
B t2cosh®t \ t? '

1
= t~COSht{/—2(02+Sinht)dt}+Cl~t-COSht
cosh” ¢

1
= c¢itcosht + cotcosht-tanht —tcosht - ——
cosht

= —t+cytcosht + cotsinht.

Download free books at BookBooN.com
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Calculus 4c-4 Linear differential equations of second order with variable coefficients

3) First norm the equation,

Pz 2dx 2
— B T =t, t>0.

Using that ¢1(t) =t - cosht we get

w1(t) / @1215)2 exp(—/fl(t) dt)dt =t - Cosht/ Wlsh% exp <+/ % dt) dt

dt
t~cosht/ =t-cosht-tanht =1¢-sinht.

pa(t)

cosh?t

The Wronski determinant is

Y1 P2 | tcosht tsinht
Oy @b | | tsinht 4 cosht tcosht + sinht

’ =t%
A particular solution is
tcosht -t
zo(t) = pa(t) % dt — o1 (1) % dt =1t sinht/ % dt —t-cosh?t = —t.

The complete solution is

x = —t + cot cosh t + cot sinh t.

4) If we put x = ¢1(t) -y =t - cosht -y, then

d d
d—i =t-cosht - d_gtJ + (cosht +t-sinht)y,
d2—$ =t-cosht d2_y + 2(cosht +t Sinht)@ + (2sinht + ¢ - cosht)
= dt? dt v
Then by insertion into the equation,
d*x dz
o= P 2t — — (=2
i Mg o

d? d
= t3cosht - Eg + 2(t? cosh t + t3 sinh t)d—i
d
+(2t*sinh ¢ + 3 cosh t)y — 2t* cosh t - d—i

—(2t cosht + 2t*sinh t)y — (t* cosht — 2t cosht)y
d*y dy
— 3 . 3o
= CObhtﬁ—th smht-%,
which is reduced to

d (dy . dy
cosht - ¥ <E> + 2sinht - - 1.

If we multiply by cosht, we get

d (dy . dy d 2, dy
ht=cosh®t- — ( == | + 2sinh¢- cosht- — = — hit— ).
cosht = cosh“t 7 ( dt) + 2sinht - cosht 7t 7 (cos t o7

Download free books at BookBooN.com
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Calculus 4c-4 Linear differential equations of second order with variable coefficients

Then by an integration,

dy

cosh?t == = sinht + co,
a +c2
thus
dy  sinht Co

dt  cosh®t * cosh®t’
By another integration,

1
~ cosht

and hence

Y= + ¢1 4 co tanh t,

x=t-cosht-y = —t-+ citcosht+ cot - sinht.

Example 1.6 Find the complete solution of the following differential equation, given that p1(t) =t
s a solution of the corresponding homogeneous differential equation,
d*z dx
1—t?)— —t — =t, te]-1,1[.
-G ~tgte =11
We have at least four different variants of solutions:
dx dx

1) Intuition. If we add —¢ I +t i 0, and then perform some small rearrangements, we get
d°z dx
t = (1-t)H)—% —t—
A=) ~tg e

d?z dx dx
= {(1-)"—s —2t— t—
{( e dt}+{ dt+x}

- % {(1 —tQ)fl—;U} + %{tx} = % {(1 —tQ)fi—f +ta:}.

We get by an integration,

dx 1 1 1
13— = (2 -1 = —¢2 — ).
( t)dt +tx 2(75 )+ec { 275 +<02 2)}
Then divide by (v/1 — t2)3,

1 1 1 1 dx t d T
I + = — 4+ = — .
2Vi—e Pi-e)p Ji—ed  (Ji-g)p  d (\/1 - t2>

This equation can immediately be integrated,

x 1 dt 1
S Y pe—
Vi-p 2 / vie o 62/ (VI—2)3

Ccos U
du

1
= -3 Arcsin ¢t + ¢ +02/

3
t=sinu COS° U

1
= - Arcsin t + ¢1 + ¢o tan(Arcsin ¢)

1
= —3 Arcsin t + ¢y + co

t
V1—1t2’
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Calculus 4c-4 Linear differential equations of second order with variable coefficients

and we end up with the complete solution
1
T = 5 V1—1t2 Arcsin t +c; V1 — t2 + cot.

2) If we put @ = p1(t) -y =t - y, then

dr  dy Pr dPy dy
@ _ W a4 L4,
a tq Ty az e Tt

Then by insertion into the differential equation,

A’z dx d?y dy dy
t = A=t —t—Fax=1-t)t— +21 —t*)—= —t> = —ty +1t
(=) gm —tg To= U=t g +20 =) = oy —ty +ty
d?y dy dy d dy
= t—t) ==+ (1-3t2)—=  + — = —Jt(1 —t?)— .
{( Vo T3 )dt} - a Mgt

Thus by an integration

d 1 1 1
t(lftQ)d—Z+y:§(t271)+02 {§t2+<02§)].

o
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Calculus 4c-4 Linear differential equations of second order with variable coefficients

We norm the equation,

dy =t _L1 1
e T T2 T o
Now,
t 1 1 1
— | ———dt —— — 2t dt
ex"( /t2<1—t2> ) exP( 2/{t2+1—t2} )
1 V1—1t2
= exp(——ln(t2)+—ln(1—t2)>: T 0< [t <1,
so we get by the usual solution formula that
V1—1t2 t 11 1 V1—t2
y = -5 -tar——— |dt+ca-
t Vi—e\ 2 ¢ t(1—¢2) t
1 V1-—1¢2 . V1—¢2 V1—t2 1
= ——. - Arcsin t + cg - +c1 - dt.
2 t t t (VI—12)3
Since

/ ! dt = / Y gy = tan(Arcsin t) = !
(vl_t2)3 B t=sinu 0083U B B Vl_tQ’
we finally get

1 /]_—t2 \/]_—tz
y:_i. ; ~Arcsin t + ¢ + ¢o - 7 )

and the complete solution of the original equation is
1
r=t-y= ~5 vV1—1t2.Arcsin t +cit +cov/ 1 — 2.

First norm the equation,

2z t dz+ 1 ot
a2 1T da T 1-et T 1o
t
Here ¢ (t) =t and u(t) = TP and
t
Q(t):eXp (—/mdt) :\/l—t27

SO

1 — t
ct+ct/L+t{/¥</Ldt>dt}
T evice evi—e\J Vi@ '
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Calculus 4c-4 Linear differential equations of second order with variable coefficients

A couple of computations give

CoS U Vv1—t2

du = — cot(Arcsin t) = —

/t2\/1—t2 /tsmu sinu - cosu t

and

t2 2 1
—dt = / udu:—/ 1 — cos2u)du
/ V 1-— t2 t=sinu 2 t:sinu( )
1 1 . 1 . 1
5 u—§sm2u :§Arcsmt—§t\/1—t2,

t=sinu

hence

/ (/ >dt / Arcsin t it /t\/lft2
21— 12 V1—1¢2 2 ) 2y1-¢2 2) 21—z

where we for ¢ # 0 see that

Arcsin ¢ dt 1/ U COS 1 1/ U d
2) 2v1-+¢ 2 Ji—sinw sin? ucos u 2 Jimsinu sin® u
. 1 cosu
= 5[—ucosu]t:sinu + §/t siny SIDU du
1 11—t 1
= ——Arcsint- i-e + o]
t 2
and
tv1—¢2 !
- dt = =t 70
3] =g £
thus

/ / dt = —l Arcsin t -
21— ¢2 V1 2 t

because the additional terms % In[t| — 3 Int| = 0 cancel. Finally, by insertion,
1
T = —§Arcsint- V1 =12 -1/ 1 —t2t + cot.

4) The normed equation is

d%x t dx+ 1 t
S — 3’;:
2 1—t2dt  1-—1¢2 1—1¢2’

cosu
t t)dt)d ——d
21l )/ /fl / \/l—t2 /t sinw SIN? u - cosu “
= —t cot(Arcsm t)y=—v1-1t%

SO

pa(t)
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Calculus 4c-4 Linear differential equations of second order with variable coefficients

The Wronski determinant is

t —v1—t2 2
t 1
W(t):’@} 2= t = +V/1— 12 = :
Y1 (%) 1 m ].—t2 \/1—t2

Then a particular solution is given by

n(t) = ealt) [

= —M/rM-
= M/\/_dtﬂ/tdt M/ dt+1t3

2
1
— \/1—t2/{ 1—t2—\/_}dt+—t3 \/1—t2/ coszu—l)du+§t3
1
= \/1—t2/ cos2u—1)du+§t3

sin u
sin u

1 1
= V1-1t [Z sin(2 Arcsin t} ——\/1—t2-Arcsint+ 5153
1, 1 1
= ——\/1—1?2 Arcs1nt—|—§t +—(t— \/l—t2 Arcs1nt+§

2

dt — o1 (1) LP;/” dt

t
1—12- 1—t2-1 S dt

Since % t is a solution of the homogeneous equation, the complete solution is

1
= —5\/1 —tZArcsin t + it + oV 1 — t2.

Example 1.7 Find the complete solution of the differential equation

Pz

(2) tt+1) 75 +(2—t2)ili—3;—(2+t)x:(t+1)2, te Ry,

by first guessing some power function solution of the corresponding homogeneous differential equation.
Then find the solution of (2) through the line element (1,6— %,64— %), and prove that this is an
increasing function.

2

dz d
If x =t", then — o =nt"! and F;C = n(n — 1)t"~2. By putting these expressions into the left hand

side of (2) we get
2
)T @)% e
= (> +t)nn — D)t 2+ (2= tH)nt" "t — 24" — ¢
=n(n— D" +n(n— D" 42t —pe g gL
=m*—n—-2)t"+n(n+)t"t - (n+ )"t
=n+1){(n—2)t" +nt" ' — "},
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This expression is identically 0 for ¢ > 0, if and only if n = —1. We conclude that

yl(t)z s t>0,

1
t
is a solution of the homogeneous equation.

In order to proceed we then must norm the equation. Now, t(t + 1) > 0 for ¢ > 0, so this is possible
in RJ’_, and

d2x+ 2—t% dv  t+2 t+1

g at o

di2 " t(t+1) dt - t(t+1) t

Then we apply a solution formula. We first compute

o) o[ 255 ).

o
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Calculus 4c-4 Linear differential equations of second order with variable coefficients

By a decomposition,

-2 #4t—t-2 . t+2 2 1

S R R A A

thus

22 2 1
Tt =12y~ Vat=t— 2t In(l+¢
/t(t—i—l) /{ t+1+t} nt+n(l+¢)

for t > 0, and hence

Qt)=e / i dt £t
= X — f .
P tt+1) t+1 ©

(notice the change of sign).

A linearly independent solution of the homogeneous equation is obtained by putting ¢; = 1 and ¢o =0
and u = 0 in some formula, by which

dt 1 [, t+1 1/ L1,
t) = t — T = t*—— et dt = - t+1 dt = - -te" =€,
yQ() yl()/yl(t)zﬂ(t) t/ 2 € n ( + )6 t e e

A particular solution of the inhomogeneous equation is obtained by putting ¢; = ¢ = 0 and u(t) =

into some formula, thus

Yo(t) = /m{/yl(t)ﬁ(t)u(t)dt}dt
- %/R't;let{/%'tfl'e_t'¥dt}dt
= %/(tJrl)et{/etdt} dt:—%/(tqtl)et'e*tdt

1 1(1 1
= —— [(t+Ddt=—=3 =t +tp=—-1— -t
t/(+) t{2 +} 2

The complete solution is

(t)=—1 Lo 1y K
Yy - 2 01t Co - €.

Of course, there are other variants of the computations above. We shall not give them here.

If
t 1
y(t):_1—§+C1‘¥+C2‘€t,
then
1 1
yl(t):_i_cl.t_2+62'et'

Then by the line element

(1,y(1),7'(1)) = (1’6 - g’e * %)
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Calculus 4c-4 Linear differential equations of second order with variable coefficients

we get

5 1
e—§=9(1)=—1—5+cl+(;2-e, thus ¢; +ecs = e — 1,

and

1 1
e—|—§:g]'(t):———cl—|—02-e, thus —c; +eca =e+ 1.

2
It follows immediately that ¢; = —1 and ¢y = 1, and the wanted solution is
Bo)= -1 2t
Since
g’(t)=—%+t12+etz—%+0+e°=—%+1:%>0,

it follows that g(¢) is increasing.

1
Remark 1.1 Here we have used that o) > 0 and that et > ¢® =1 for ¢t > 0.

Example 1.8 Solve the differential equation

2 d
(1+t2)ﬁf+2td—f—2x:4t2+2, teR,,

given that is has some polynomial of second degree as a solution.

We demonstrate three variants of solutions:
1) Tt is easily seen that the solution of the homogeneous equation is
x =cit+ co(l + ¢ - Arctan t).
According to the hint we may guess a particular solution of the form = = at? + b, where we can
neglect the term c - ¢, because it is a solution of the homogeneous equation. By insertion into the
left hand side of the equation we get
2a(1 + ) + 2 - 2at® — 2at* — 2b = 4at® + (2a — 2b).
This expression is equal to 4t? + 2, if @ = 1 and b = 0. Hence the complete solution is

& =t?+ 1t + co(1 +t - Arctan t).

2) We apply again that the solution of the homogeneous equation is

x =cit+ co(l + ¢ - Arctan t).
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Calculus 4c-4 Linear differential equations of second order with variable coefficients

Choose ¢1(t) = 1. When we norm the equation, we get

d%x N o2t dx 2 4t2 + 2
e — 3’/‘ p—
dt2  1+t2 dt 1+t 241"

SO

Q(t)zexp(/litht> =t +1.

Then by a solution formula,

z(t) = t (/m {c1+/(t2+1)t- ifff dt} dt—i—cz)

1 1 1
t t ——— Vdt+t | ————{ [ (4 + 20)dt}dt
Co +C1 /<t2 t2+1) + /tQ(t2+1){/( + ) }

tt 42 1
= t/mdt‘f’CQ cit (¥+ Arctan t)

= t? 4ot —cy(14t- Arctan t).

3) If we multiply the equation by ¢, we obtain by some deftness that

A’z dx A’z dx dx
3\ 2% _ 3L 2y &b
(t+t )d1t2 +2t o 21 = {(t+t )d +(1+3t )d } {(Ht )dt+2tz}
_d 5, dx 2 1 de 1

(Z {152(7:2 + 1)5 (%)} = 463 4 2.

Then by an integration for t # 0,

282 + 1)2 (x) — 2 e,
so if we divide by t*(t* + 1) (for t # 0), we get

() =1-a (1_;)

dt \t 2 t?2+1
Another integration gives

T 1

n =t+c + e (; + Arctan t> ,

and thus

=14 c1t + co(1 +t - Arctan t).
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Example 1.9 Find the complete solution of the differential equation

in each of the intervals |— oo, 0] and ]0,00[, given that the homogeneous differential equation corre-
sponding to (3) has the solution ¢1(t) =t -sint.

Ezplain why anyone of the found solutions can be extended in precisely one way by one of the other
solutions to a single solution of (3) all over R.

Then find the complete solution of (3) in R.

Find those line elements (0, xzq,p), which allow at least one solution of (3).

We give here four variants of solutions.

1) The factor ¢ in p1(t) =t -sint invites one to put x =t -y in order to obtain a simpler equation in
y. We get by a couple of computations,

dr  dy Pr Py dy
— =t d S =t—Z422
i at +y an +

hence by insertion into (3),

A’z dx d?y dy dy d?y
3 2 2 3 2 2 3 3 3
t t 7 QtdtJr(t +2)x =t dt2+2t o 2t 7t 2ty +ty+ 2ty =t dt2+ty.
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Thus, if ¢ # 0, then

d?y
dt?

+y=

L,

the complete solution of which is

y =1+ cysint + cocost.

Then we obtain the complete solution of the original equation by a multiplication by ¢,

r =1t+ citsint + cot cost, t #£0.

If we instead put © = @1 (t)y = tsint - y, then

dt dt
d? d? d
Wf =tsint Wg +2(tcost + sint)d—ztl + (—tsint 4+ 2cost)y,

T . dy .
=tsint — + (tcost +sint)y,

hence by insertion into (3),

3 =

d?y
t3sint —= + 2t3 cost —.
Sin + coSs at

A’z dx
2= 2t — 4+ (242
dt2 g P2
d? d
tSSintEZy +2t2(tcost+sint)d—?;

+t2(—tsint + 2cost)y — 2% sint

—2t(tcost +sint)y + (t* + 2)tsint - y

dy
dt?

When t # pm, p € Z, this equation is reduced to

d?y
dt?

Since

cost dy 1
sint dt  sint’

cost 1
-2 dt ) =
P < / sint ) sin®t’

it follows that

dy

dx

dy / sin? ¢ c2  cost o d
dt  sin’t ) sint sin?t  sin®t  sin?t  dt
Another integration gives
1 cost
y=——+tc+co —7,
sint sint
and we find the complete solution
r=1tsint-y =1+ citsint + cot cost, t#prm, p €Z.

{

1
— +C2 COtt} .
sint

31
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3) In the following variant we start by norming the equation for ¢ # 0,

A’z 2dx (s 2 ’

— - — = |z=t.

dt? t dt t2

Since ¢4 (t) = tsint, it follows for ¢ # pm, p € Z that
t2
pa(t) = tsint/ ———5—dt = —tsint - cott = —tcost.
t2sin” t

The Wronski determinant is

wi=| 5 7

. tsint —tcost | tsint —tcost g
" | tcost+sint tsint —cost | | tcost tsint |

Then a particular solution is given by

zot) = oa(t) | Lt — (1) @dtz—tcost/ dt

w w
= tcos’t+tsin’t =t

tsint~td . tcost-t
t—2 t+tsint t—2

Summing up the complete solution is

x =1+ citsint + cot cost, t#pm, p €.

4) We norm again (3),

dPzr  2dx 2
SRR — 1 _— p— .
7 tdt+(+t2>x t, t#0

Since ¢1(t) = tsint and u(t) = ¢, and

() = exp </%dt) - t%

the complete solution is for ¢ # pm, p € Z,

tsint / e +/tsmt tdt| dt +
X = Sin —F— | —C . C
2sin?t | 12 !

1
= tsint/ {—CQ+/Sintdt}dt+CltSint

sin? ¢

cost
sin? ¢
= t+citsint + cotcost, t# pm, p €.

dt

= cotsintcott + citsint —tsin/

Remark 1.2 It is only sufficient with the restriction ¢ # 0 in the first variant. All the methods of the
other three variants require that ¢ # pm, p € Z, so we have strictly speaking some extension problems
in these variants at all these points.
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Investigation of the possible extensions. Depending on the choice of method we shall either
check the continuation to all points t = pm, p € Z (in the second, third and fourth variant) or just
to t = 0 (in the first variant). We shall here only check the possible extension to ¢ = 0, as if we had
applied the first variant. The extensions to the other points are quite similar.

Hence we assume that

r =t+ citsint + cot cost, for t # 0.

Then
dz . .
i 1+ cy(tcost+sint) + co(—tsint + cost),
d*x . .
i c1(—tsint 4 2cost) + co(—tcost — 2sint).

Clearly, this solution holds in all of R. The problem is if there are other possibilities of extensions.
We note that

. . : / _ 3 /" —
(4) }E%x(t) =0, %E%x (t) =14 ca, }E%sc (t) = 2¢q,

no matter it the limit is taken from the left hand side or from the right hand side. Thus, any C?
solution must have uniquely determined constants ¢; and co by (4). We therefore conclude that the
natural extension

r =1+ citsint + cot cost, t e R,
is the complete solution of (3) all over R.

Finally, it follows from (4) that the line elements (0, zo, p), through which we have a solution of (3),
are given by (0,0,1 + ¢3), hence the line element must necessarily have the form (0,0, p), so 29 =0
and co = p — 1. Since there is no restriction on ¢y, there are infinitely many solutions through every
line element of the form (0,0, p),

x=1t+citsint + (p — 1)t cost, teR; ¢ eR

The explanation of this phenomenon is that ¢sin ¢ has a zero of second order at 0, so we cannot “catch”
this function by means of the line element, which is only of the first order.

On the other hand, the extensions to pm, p € Z\ {0}, are all unique, because here ¢sint has only zeros
of first order, so the line element can “catch” tsint.
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Example 1.10 Find the complete solution of the differential equation

&Pz dx
3 _
4t —dt2 + 3t ar — 3z = O,t S R+,

by first finding the solutions of the form t%, where « is a real number.

1) If we put x = t*, ¢ > 0, then

A2z dx
= 43— 43t —
0 FTERLT

= dafa — DT 4 3at™ — 3t* = (o — 1)t*{4at + 3}.

— 3z =4t afa — 1)t* 72 + 3ta -t — 3t*

This equation is fulfilled for every ¢ > 0, if and only if o = 1, thus & = ¢1(¢) = t is a solution of
the homogeneous equation.

2) We norm the equation,

dPzx 3 1 dx 3

@i g w10

.
. .
A\
iy \‘.‘ <
27\
(27777 XX/ b

Llle
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Then a solution which is linearly independent of ¢; is given by

oa(t) = @1(t)/ﬁ exp (——/—dt) dt—t/ exp( )
feo(53)(5) =5 (33)

4
Here —= can be included in the arbitrary constant, so the complete solution is

3
x(t) = e1t + cot exp (4t> t >0,

where ¢y and ¢y are arbitrary constants.

Example 1.11 Find the complete solution of the differential equation

d*x dz 9
— cosht — — (1 — coth = ¢t
o t p (1 —coth“t)x=e¢

in the interval 10, 00[, given that x = sinht is a solution of the corresponding homogeneous equation.

We give here four variants.

1) It is seen by inspection that the equation can be written in the following way,

Az dx d d?z d d (dx cosht
= 2 tht- — + — tht} - = — — tht- —_— —
¢ a2 {CO g Tapleothth ey =G = gpleotht-a) = o o T G

d sinh ¢ ! d_x_—cosht T d smhti{—x }
dt sinht dt sinh®¢ ~at dt \sinhtJ |~

Then by an integration,

T
b g
sin " dt \sinht

hence by a rearrangement,

d x et Co 2¢%t 2cqet d 1 1
dt (Sinht> Sinht+sinht et —1 + et —1 dt n(e )t et —1 et+1 €

)=et+62,

Another integration gives

T
sinh ¢

t1
=In(e* — 1)+ ¢ +cln <Ztﬁ>’

so finally we obtain (with various equivalent variants)
et —1
x = sinht-In(e* — 1)+ ¢;sinht + cosinht - ln< +1>
= sinht-In(2e'sinht) + ¢; sinht + cysinht - In (tanh 5)

t
= sinht- {t +Insinht} + ¢} sinht + ¢y sinht - In (tanh 5) .
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2) It we put & = @1(t) - y = sinht - y, then

dx . dy
i sinh ¢ - yr + cosht -y,
2 d? d
el =sinht- _dtg + 2cosht- d—i + sinht -y,

hence by an insertion into the differential equation

el = @—cotht d—x—i—;x
C a2 dt  sinh®t
d%y dy dy cosh? t 1
= sinht- —5 +2cosht- — +sinht -y — cosht— —
S dt? +acos dt +emhi -y —cos dt sinht v+ sinht 7
d? d d d
= sinht- dTg + cosht - d_:g = (sinht- d_i) .
Then by an integration,
d
sinht - d—i =e! + ¢,
from which we e.g. get
dy 2¢e% o d 5 1
— = + = —In(e* — 1)+ ¢y . .
2t _ i L L 2 t
dt e 1 2sinhtjcoshg  dt tanhg o 2 5
Another integration gives
2t t
y=In(e" —1)+c¢1 +c2ln <tanh 5) ,
so finally,
t
r = sinht-y = sinht - In(e* —1)+¢; sinh ¢ +sinh ¢ - In tanh 5
3) The equation is already normed, so f1(t) = — cotht, thus
0 = o) [ gz exol- [ A dna:
= —— exp(—
72 ! ¢1(t)? P '
1 cosht
= ginht | ——— dt ) dt
S / sinh? ¢ P (/ sinh ¢ )
1 inh ¢
= sinht/ —— exp(Insinht)dt = Sinht/ * dt
sinh” ¢ cosh“t —1

1 1 1
= sinht- - - dcosht
S 2 / (cosht 1 cosht+ 1) o8

(cosht -1

1
= sinht--In| ———
St . cosht+1

2

) ==yginht¢ - Intanh %
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The Wronski determinant is

t

sinh ¢ sinh ¢ - In tanh —

P1 P2 2
1 sinh ¢ sinh ¢

¢ ht cosht-Intanh - + sinht- = -
€08 €08 fan 2 +sin 2 \cosht—1 cosh+l
sinh ¢ 0 .
. ht 0
_ ht _ | sin o .
0 sinht. — o 1|~ sinht
cosh“t—1

When we apply a solution formula we get the particular solution

u u
0(t) = ealt) [ T dt— o) [ Tt

inht-ef inht - In(tanh £)e?
sm. e dt—sinht/ sin n( anh 5 )e
sinh ¢ sinh ¢

= sinht-Intanh % /

dt

t t
= elsinht - Intanh 3~ sinh ¢ / In <tanh 5) et dt
t

e
sinh ¢

= e'sinht - Intanh % —sinh ¢ - In(tanh %) el + sinht/ dt

. 2e% . 2t
= 0+ sinht- mdt:smht-ln(e —1).

i S

S [ HE-

it g
e
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Summing up the compl

& = sinht - In(e*

4) Since 1 (t) = sinht and u(t) = e’

Qt) = eXp(—/cothtdt) -

we get that

x(t)

sinh ¢ < /

sinh ¢ (/—
a7 h
2
sinht/ €
e2t —

sinht - In(e*

ete solution is

t
— 1) + ¢y sinh ¢ + ¢osinh ¢ - In tanh 7

, and
1
sinht’

sinh ¢ sinh ¢

t{cl+/s‘ ht

111

S111 2

1
— (1 + et)dt) + cosinht

2t
on dt—l—czsmht—i—clsmht/

— 1) + cosinht + 501 sinht - 1n (

cosht+1

el dt} dt + 02>

dcosht
cosh?t — 1

cosht —1

).

Example 1.12 Find the complete solution of the differential equation

2

d2y
(t2+1)d2

d
+ (@2 +2)%

+2ty:2, t€R+,

dt

given that the corresponding homogeneous equation has the solution

1
y= =

teR,.
t € B
Hint:
4% + 2
/t3+t dt =In(t* +1*), teRy.
First method. We get by some deftness that
d?y
2 = (t2+1)d (4t2+2) , 2ty
dy 2 Y
= (t*+1) —= 3t 4+ 1)— + 2t
+ { g + (37 + )dt+ Yy
= (t2+1)— Yy (t2+1)d —|—(3t2+1)d——|—2ty
t\dt dt dt
d (d dy
= (PH+1)=<{—(t 2% =2 4 2t
@405 { G} 2 vy
d (d dy
= (P41)— < —(t A t— 41
05 { G+ {10
d (d d
= (P+1)—<{—(t — (1) —(t
@+ 05 { G+ HE + D )
d (., d
= —L(P+1)=(t
il g}

38
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thus

% {(t2 + 1)%(@)} =2.

Then by an integration,

d d 2t Co

2+ 1)—(ty) =2t dvs. —(ty) = 5— + 5——.

( + )dt(y) +02a VS dt(y) t2+1+t2+1
And by another integration,

ty =1In(1 + t2) + ¢o Arctan t + ¢,
and the complete solution is

In(1 4+ 2 1 Arctan t
y:¥+01'¥+02‘f, teRy,

where ¢; and ¢y are arbitrary constants.

Second method. The standard method. First norm the equation,

>y A2 +2 dy 2 2

a2 @+ dt  e2+1Y T )

1
Since ¢4 (t) = 70 we have

1 4t2 + 2 1 1 1 dt Arctan t
== [t - dt|dt== [ ? ———dt== = .
wa(t) t/ eXp( /t3+t > t/ 12 t/t2+1 ¢

Then we compute the Wronskian,

1 Arctan t
ot t _ 1
Wt =| "1 Arctant L1 “PELD)
t t2 t(t2+1)

A particular solution is

pt) = @2(15)/7%“)“@) dt—%(t)/i(m(t)u(t) dt

W (t) W (t)
1 1 2 1 Arctan t 2
= ZArctant [ = -t3(1 tz-idt——/iﬂfgl ) ——dt
g orean /t W) ¥ t 8
1 1 1 2t
= —Arctant-2t— - [ 2Arctan tdt = 2 Arctan t — — { 2t Arctan t — | ——— dt
t t t t2+1

1
The complete solution is

Arctan t

1
y:¥1n(1+t2)+%+02 R te Ry,

where ¢; and ¢y are arbitrary constants.
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Example 1.13 Consider the differential equation
d*y dy

1 — +(2 — = R,.

(5) t( +t)dt2+( +3t)dt+y 0, teRy

1) Prove that y =t=', t € Ry is a solution of (5), and then find the complete solution.

2+ 3t 2 1
Hint: Exploit that ——— = - + ——.
mn Tploit tha a+1) t+1—|—t

2) Find the complete solution of the differential equation

d2
H1+8) =5 +(2+31)

dy 1
Chy=—  teR,.
a Y +

First variant. This problem is immediately solved by some reformulations of the linear, inhomoge-
neous equation of (2),

1 d*y
1 —Z +(2
t( +t)dt2 +(2+3t)

{(t—&-tQ)% + (1+2t)%} + {(1+t)% +1- y} = % {(t+t2)%} + %{(1+t)y}

%{(1+t) [tfl—gﬂ-y}}%{(lﬂ)dﬁ(f'w}

If this is integrated, we obtain with some arbitrary constant co that

dy
dt

1+t

+y

d
(l—i-t)a(t-y)202—|—ln(1—|—t)7 for t > 0,

hence by a rearrangement

d ~ In(1+1) Co

—(t- = for t 0.
gt v=— 7 tp fort>

By another integration we obtain with another arbitrary constant c;,
1 2
t~y:§{ln(l+t)} +e1+ealn(l+1), for t > 0,

and the complete solution is er

1 {In(1+t}?* ¢ In(1+41¢)
= 4 — — for t > 0,
Y73 t ty e T o
where ¢; and ¢y are arbitrary constants.

In particular, y = t~! is a solution of the homogeneous solution, and

o In(1+1¢)
y=7 +C2 7

is the complete solution of the homogeneous equation.
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Second variant. The standard method.

1) A check for ¢ > 0 shows that

(4)-

a2 /1 d (1 1 d
tA+)— (=) +@+30)= (=) + = =t(1+1)=
(1+ )dt2<t>+( +3)dt(t>+t 005

%(1+1) 243 1 1

SHOED 2ER L a2 s =0

1
It follows that ¢ (t) = . is a solution of (1.13).

Then norm the equation,

d?y 2+ 3t dy Y

A2 T t(1+t) dt - t(E+1) 0,

where the right hand side in the inhomogeneous case is

41

t(1+1)%

Copenhagen Diversity creating knowledge
Business School
HANDELSH®)SKOLEN

11
2+43t)— +
(2+3t)5 + 5
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It follows from the equation above that

2+ 3t 2 1

fl(t)zt(lﬂ) BT

so a linearly independent solution is given by

gol(t)/exp (—/fl(t)dt> ﬁdt:%/exp <_/{%+$} dt) 2 dt

1 1 12 1 [ dt  In(l+t
;/exp<—ln\t2<1+t>\>-t%ztz—/7@:;/ n(l+t)

t] 21+1) 1+t ¢

pa(t)

The complete solution of the homogeneous equation (5) is then

1 In(1 +¢)

iU:Cl'Z—FCz' 7 for t > 0.

2) The normed, inhomogeneous equation is now

@+(2+ 1>d_y+ 1 1

a2 T\t T 1xt)at e Y T a0
thus
1
)= — .
ut) = e

The Wronskian can be computed in various ways:

(a) W(t) =exp (—/ (% + %H) dt) = ﬁ@%t)

1 In(1+1¢)
Y1 P2 t t 1
b) W(t) = = = .
(b) W(t) ‘ oo 1 In(1+¢) N 1 2(1+1)
£ £ t1+1)

We get (NB, only one of the many possible variants, Q(t) = W (t)~1)

po(t) = @2(t)/Mdtf<p1(t)/Mdt

wi(t) W(t)
— M/%.ﬁ-ﬁ(lﬂ)dt—%/lnutﬁ)-t(lit)Q-ﬁ(lH)dt
N ln(1+t)/ dt 71/ln(1+t) dt:{ln(lth)}Qil.{ln(lth)}Z
t 1+t ¢ 1+t t 2 t
1 {In(1+1))?
2 t

Due to the linearity the complete solution is

1 {In(1+41¢)}? 1 In(1 +¢
y:§'w+cl'z+02'¥’ t>07

where ¢, and ¢y are arbitrary constants.
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Example 1.14 Consider the differential equation

2y d
(6) tQEng—i_y:o, teR,.

1) Prove that (6) has the solution y =t, t € Ry, and then find the complete solution.

2) Find the complete solution of the differential equation

2
P’ 4 t— —y=t, teRy.

This example can be solved in many ways.

First variant.
1) If we put y =t into the equation, we get
d’y . dy
P+t —y=t"-0+t-1-t=0
az a Y * ’
proving that y = ¢ is a solution of the homogeneous equation, so ¢1(t) = t.
By norming, i.e. division by t2, we get for ¢ > 0 that

P’y 1dy 1 1. .
ﬁJr?E_t_?y:O’ and:zlspmgsmal(Q) .

Since

Q(t) = exp (/ A dt) ~exp (/%dt) — exp(Int) =1,

we get

1 1 dt 1 11
H=p1(t) | — =——dt=t | — =t [t 3dt=—t t72=—=.-.
#2(0) *”1()/%(02 Q(t) /t?-t / 2 21

The complete solution of the homogeneous equation is

1
y(t):clt+02«¥, t>0,

where ¢y and ¢y are arbitrary constants.

1
2) Since u(t) = : by the norming, we get the particular solution

yolt) — @1(15)/m{%(t)ﬂ(@u(t)dt}dtt/%t {/t~t~ %dt} dt

11, 1
— ¢ = . 2dt==tnt
B2 gt

Then the complete solution is by the linearity,

1 1
y(t)fitlnt+clt+02~¥, t >0,

where ¢y and ¢y are arbitrary constants.
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Second variant.
1) If we put y = t* into the equation, then

Py | dy
2 . a a a _ (.2 a
t—dt2 +tafyfa(a71)t +at® —t* = (a® — 1)t°.

This expression is identical 0 for ¢ > 0, if a = £1, so the complete solution is
1
y(t):clt+02~¥, t>0,

where ¢y and ¢y are arbitrary constants.

2) Then note that the right hand side of the (non-normed) equation

?y | dy
et —y =t
dt? + a4

is a solution of the homogeneous equation. We therefore guess a particular solution of the form

yo(t) = a-tlnt,

where
dyo Py a
Eza(l—klnt) and W:Z
Then by insertion,
d*y | dy
2 _ _
t W—Ftd—y —y=a{t+t+tint —tInt} = 2at,
A 1
which is equal to ¢ for a = 3
The complete solution is
1 1
y(t)zitlnt—l—clt—l—cT;, t >0,

where ¢, and ¢y are arbitrary constants.
Third variant.

1) By the monotonous substitution ¢ = ¢, u = Int, and the chain rule we get,

dy _du dy ldy o _dy
dt — dt du tdu’ Udt du’
and
ﬁ@:t?i 1@ —=¢2. _l %_Ft?.l@:f_y_@
dt? dt | t du t2 ) du t2 du?  du?  du’
hence
d?y dy d*y dy dy d*y
PPy =2 Ty T =2y —t="
a 2 du " du duz Y “
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and thus
d2
d—g_ =e", w=1Int, t>0.
u

The characteristic equation R? — 1 = 0 has the roots R = %1, so the homogeneous equation has
the complete solution

1
u:01t+02¥7 t>0,

where ¢; and co are arbitrary constants.

y=cre" + coe”

Since the right hand side is of the form e" = ¢;(u), we guess a solution of the form y = aue"
where

d d?

W ot er og TL=afut2en
Then by insertion,

d2

d—ug —y=a(u+2)e" — aue” = 2ae",

1
which is equal to e for a = 2 and the complete solution is

1 1 1
yziue“—l—cle“—l—ch*“:itlnt—i-clt—i—cQ;, t >0,

where ¢; and ¢ are arbitrary constants.

Fourth variant We get by some clever manipulation on the inhomogeneous equation that

d?y dy d?y dy dy d dy
— 227 oy =2l o2 N T _ 2 )%
! Pae e Y {t a RIS ST LT

_ A fs(ldy 1 _ 4 [sd Y
B dt{t (t dt t2y>}_dt{t dt(t) ’

thus

S )

Then by an integration,

d ry 12 d ry 2c9 1
3— — = — — —_— — = —— —_—
t dt(t) 20t 3, dvs dt(t) B T

and by another integration,

y_ e 1
—C1+t2+2

= Int,
t

and the complete solution of the inhomogeneous equation is

1 1
y=gthitat+es, >0,

where ¢; and ¢y are arbitrary constants.
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2 Euler’s differential equation
Example 2.1 Consider the differential equation

iy, d
28V Ly =0,

(7) ¢ dt? dt

teR,.

1) Prove that (7) has a solution of the form y = t*, and then find the complete solution.

2) Find the complete solution of the differential equation

+2 @ dy

- teR,.
e ar Y : € R+

1) If we put y = ¢, then

0=ala— 1)t + 3at®* +t* = (a® + 2a + 1)t%,

1
which is satisfied for ¢ > 0, when o = —1, and y = n is a solution.
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The complete solution can now be found in several ways.

a) If one knows the theory of Euler’s differential equation, then since

?+2a+1=(a+1)?

has a = —1 as a root of multiplicity two, one concludes that the complete solution is
1 Int
y:C1';+C2'T, teRy, c1, co arbitrary.

b) The equation is normed,

d2y 3dy 1
¢y, 24 —0, teR,.
ettty +

Then a linearly independent solution is given by

ya(t) = yl(t)/exp (— / % dt) /—t4dt —, t>0.
The complete solution is
y=c- n + ¢y - lnTt’ teRy; ¢, co arbitreere.
2) Here we also have several variants.
a) Guessing. It follows immediately that y = —2 is a particular solution, hence the complete

solution is

1 Int
y:—2—|—c1-z—|—62-7, teRy; ¢, co arbitreere.

b) Simple manipulation. Rewrite the equation in the following way,

2y d L%y d d
I - t2—+3t—y+y{ —+2t—y}+{t—y+y}

dt? dt dt? dt dt

_ 4 @th d t t@+ _ 4 t—
Tdt dt T dt dt Cdt

Then by integration,

d d 1
Lty) = —2 hus - (ty) = =2+ = co.
tdt (ty) t +co, thus o (ty) + , C

And by another integration,
ty = —2t+colnt+ cy,

and we finally get

1 Int
y:—2+cl-z+02-n7, teRy; ¢, co arbitrary.

d
dt

()}
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c)

An alternative solution. When the equation is normed we get

d’y 3dy 1 2
T t>0
a2 T ra el T e =5

2 1
so u(t) = 2 and y1(t) = . and

Q(t) = exp (/ % dt) =13,

Then a particular solution is

y(t) = yl(t)/m{/Q(t)yl(t)u(t)dt} dt = %/tlg-t?’{/%-t?’ (—%) dt} dt
— _2.%/%{/dt}dt:—?%/dt:—z

Summing up the complete solution becomes

1 Int
y:—2+cl~¥+02~n7, teRy, ¢, co arbitreere.

An alternative solution. The normed equation is

d’y 3dy 1 2
— -+ sy=—= t>0.
a2 "t 2 2’ ~
The Wronskian is
1 Int
yi(t)  ya(t) 7 S LT e .
yi(t)  wa(t) 1 1-Int -1 1-Int
2 2
Then a particular solution is
y1(t)u(t) / Y2 (t)u(t)
t) = t T dt — t L dt
vy = ) [ Bpa - [0
Int 1 2 1 Int 2
e I B dt——/t?’-l —Z ) dt
t t 12 t t 2
Int 2 2
- —QHT/dzH—?/lntdt: ~2Int 4 S{tnt -t} = -2,
The complete solution is
1 Int .
y:—2+cl~¥+02~7, t>0; ¢, co arbitrary.

1
Since y1(t) = n is a solution of the homogeneous equation, we obtain a simpler equation in z,

if we put

1
-z
t

y=yi(t) 2=
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It follows from

dy_lds 1 Py _1d: 2d: 2
dt— tdt 27 izt dt2 t2dt o 37
that the differential equation is written
d?y dy d?z  _dz 2 dz 3 1
-2 = t’—= 4+ 3t— =qt——2—+~— 3— —— -
T A R e R TS R RS S

_ tdQZ—I—dZ—td dz +dt dz_d tdz
Codt2 At T dt \ dt dt dt  dt \'dt )’

Thus be have found the equation

d dz
— [t— ) = —2.
dt ( dt>

When this is integrated, we get

dz dz 1
Ty, thus &2 = —2 4 ¢y =
dt tez, thus ey

Then by another integration,

1
Z:/<—2+C2E)dt__Qt—’_cl—’_chnt

Finally, we get the complete solution

Int

1
Y= ; =—-2+c¢c - 7 +co- F t>0; c¢1,co arbitreere.

Example 2.2 Consider the differential equation

d*y . dy
8) t*—= —3t— +4y =0 teRy.
( ) dt2 dt + Y ) € +
1) Prove that (8) has a solution of the form y =1t*, t € Ry, and then find the complete solution.

2) Find the complete solution of the differential equation

2 d
28V 5 W gy =t teR,.

t
dt? dt

1) If we put y = t* into (8), then
(9) a(a—1)t* —3at™+4t" = (a® —4a+4)t* = (a—2)*t°.
This expression is identical 0, if o = 2, hence a solution is y; = 2, t € R..
Remark 2.1 Since the equation is an Euler equation and o = 2 is a root of multiplicity 2, a

linearly independent solution is given by t?Int. However, this can no longer be assumed to be
known. Therefore we continue with the following more difficult way.
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We norm the inhomogeneous equation,

Py 3dy 4
SV _ 2L 2 y—2 teRy,

3
so f1(t) = —= and u(t) = t2. Then by using the solution formula we get a linearly independent

solution of the homogeneous equation,
(t) (t) / L / fi(t)dt) dt = t* / Lo (2 at) ar
Y2 n MOE p 1 /A p p
= tQ/l exp(slrnt)d:t:tQ/l -t3dt=t2/1dt=t21nt
t4 t4 t '

The complete solution of the homogeneous equation is

y = c1t? + cot? Int, teR,.
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2) a) We guess the solution y = ct* of the inhomogeneous equation, thus a = 4. When we put this
into (9), we get

2 dy
Y3t %Y gy = (4—2)2ct* = deth = ¢4,

207y
dt? dt

1
which is satisfied for ¢ = T and the complete solution is

1
—tt + e1t? + et Int, teR,.

y:4

b) Alternatively we apply the horrible standard solution formula, where we have

W) :‘ Z Qttl?f it '_tg
Wl(t)=’ 0 t*Int ‘z—t4lnt,
2 2tInt+t
W2(t)=’ Z toz =1t
Then
yo(t) = /Wltt dt+y /WQtt dt—t2/ t41ntdt+t21nt/—dt

) ) t? 1 [ 5 t2
= —t* [ tintdt+t*Int [ tdt = —t* 5 Int—5 [ Sdiy+tnt- 5

1 1
= — 2. P=t
4 47

and the complete solution is
1
Y= Zt4+c1t2+c2t21nt, t e R,.
¢) Alternatively we insert into another solution formula, in which we use
3 1
Q(t) = exp </ fi(t) dt> = exp </¥ dt) =5
Then the complete solution is
1
t) = t — HQ(t)u(t) dt| dt
v = n0] [ e |t [nOe@u | e
_ 2 t3 2 1 2d d 42 1 di| d
= t t_4 Cl+ t t_?’t t t+62 =1 Z Cl+ tdt t+02
;1 #2 t
= tz{/ ( R 5) dt+c2} :02t2+01t2lnt+t2/§dt

4

t
= Z+c2152+c1t2 Int, t>0.
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Example 2.3 Find the complete solution of the differential equation

Pz dx
3 2
g+ +tr=2  teRy,

given that the corresponding homogeneous differential equation has a solution of the form x = t* for
some o € R.

If we put x = t%, we get for the homogeneous equation that

sdx pdx a+1 2 0+1
t prel +3t % +tr ={a(a—1)+3a+1}t*"" = (a+1)“t*" =0.

1
It follows that =z = 7 t > 0 is a solution of the homogeneous equation.

The rest of he example can now be solved in many ways.
1) By norming we get the equation

d2x+3dx+1x_2 £ 0
a2 ot dt o 2Tty '

Now,

Qt) = eXp(/ fi(t)dt) = exp (/ % dt) =13,

and u(t) = 2/t3, hence since ¢ (t) = 1/t we get the complete solution

1 t2 1 5 2 1 1 [fdt 1 [1 2
= - — — 3. dt| dt =c - ~ | =+== =dtpdt
x t{/t3[62+/t 3 ] +C1} C1t+czt t+t/t{/t }

1 Int 1 Int
= .= — 4+ = [ 2—dt
c1 p + co + t/ 7

t
Int)? 1 Int
_ ( t) +Cl'¥+02'77 t€R+, ClaCQGR'

2) First we norm the equation

d2x+3dx+1 2 £ 0
— t-—+tsr=—= .
a2t dt 12 3’

From ¢1(t) = 1/t follows that a linearly independent solution of the homogeneous equation is
given by

1 [, 3 1 [, 1 [, 1 Int

The corresponding Wronskian is

1 Int
W(t) = t t 111 Int 'i 1 Int ‘i
1 1-Int 3| -1 1-Int 310 1 t3

2 )
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Then a particular solution is given by

Int 1 2 1 Int 2 Int [dt 1 Int
)y = — [ Sdt—- | = Sdt=2— [ = —= [2—dt
wo(?) t )t 3 t] 't 3 t ]t t/ t
2(lnt)2 B (Int)®>  (Int)?
t t ot

Summing up the complete solution is

Int)? 1 Int
(nt) +c1-z+62-n7, teRy, c1,co arbitrary.

The equation is an Fuler equation in disguise. In fact a division by ¢ > 0 shows that

d*x dz 2
10) == +3t— +az==, >0,
10) 75 T30 T =5
with the characteristic polynomial for the Euler equation (R+1)2. Since R = —1 is a double root,
we guess that the complete solution of the homogeneous equation is

1
r=c - +co—, t > 0.

Check. Clearly, 1/t and (Int)/t are linearly independent. We have already proved that 1/t is a
solutions. Then put z = (Int)/t. We have

der 1—Int q d’xz  2lnt-—3

S _ Tt g L2

dt t2 @ dt? 3
hence by insertion into the differential equation,

s d%x gdx

n i 43t o +tx=(2Int—3)+3(1—Int)+Int =0,

and (Int)/t also fulfils the homogeneous differential equation, and the claim is proved.

Then we guess a particular solution of (10). The apparently obvious choice ¢/t does not apply,
because it is already a solution of the homogeneous equation. The same is true for ¢(Int)/t.
Therefore, we try instead with x = ¢ -z, where 29 = (Int)?/t.

Check. If g = (Int)?/t, then

drg 1 2 2Int  —(Int)*+2Int¢

praiaia i 7

and

Prg 2 , 1 1 ,
e t—s{(lnt) 721nt}+t—3{721nt+2} = t—3{2(lnt) —61nt+2}.

These expressions are put into the left hand side of the original equation,

3d2$0 2d$0 2 2 2
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which is precisely the right hand side of the equation, so ¢ = 1, and x( is a particular solution.

Summing up the complete solution is

Int)? 1 Int
ng—l—Cyz—l—cTnT, teRy; c1, co arbitrary.

4) The Euler differential equation can be solved by using the monotonous substitution
u=Int, t=e" te Ry, u e R.
Then by the chain rule,
dr  du dxr 1 dx

At dt du t du’
dQ_x_i 1 dz\ 1 dov 1 Pr 1 dQ_.T_d_.T
a2 dt o du?  du’

-, Ly =
t du 2 du  t?2 du? 2
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By this change of variable the equation is uniquely transferred into

Pz dx Pz dx dx Pz dx
_ 43 2 _ _ _
(11)2—td2—|—3t —dt+t t{d2 du}+3t —d +tx = { —|—2u—|—m},

hence by a reduction,

Az dx
— 42— 4x=2e""
d "
This equation has constant coefficients. The characteristic polynomial R? +2R+1 = (R+1)? has
R = —1 as a double root. The complete solution of the corresponding homogeneous equation is
r=ce “+coue Y, u € R; c¢1, co arbitrary.

We can find a particular solution in various ways:
a) Guessing. Suppose that x = u2e~*. Then

dxr A’z

= (—u® +2u)e™™ and = (u? —4u+2)e™

du du?
Then by insertion,
d? d
d—uz + 2£ +x=(u? —du+2)e " +2(—u +2u)e " fufe T =27,

proving that z = u?e~" is a particular solution.

b) Alternative solution. Since Q(u) = exp([2du) = e*“, a particular solution is given by

1
xze_“/m(/e_" .. e du)d /{/Qdu}du—e “/2udu=u2e_“.

¢) Alternative solution. If we put z; = e™* and 25 = ue™", then the corresponding Wroriskian
is

— % (1—u)e™™ -1 1-u 0 1

Then a particular solution is given by the formula

uefu/e% e " 2e " du — 67“/62“ cue " 2e "du

= ue*“/Qdu - e*“/2u du = 2ue " —ule ™ = u2e v

x

d) The original transformed equation (11) is now rewritten as

2 AL PRV (.5 WP G PR
= dgE Tt edu du) "€ du S T"

_ a%{e Zz}+—{“ v} = fera,

Then by two integrations of the equation

d? .
du? {et} =2
2 —u

we get ez = u?, hence a particular integral is z = u?e
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Summing up the complete solution is [where u = Int]

Int)? 1 Int
r=ule""+ e 4 coue " = ( t) +cq - n +cy - < t € Ry;  c1,co arbitrary.

5) Intuition. By some deftness we see that

A%z dx d (dx dr dx dx
2 = ¢ 2 =2 L (Y 1. =4+ = tt— +1-
g T30 Tt {dt(dt>+ dt+dt}+ {dt+ x}

- tz{i<t§f>+f;}+ %( ) = tQ%{t Z—f+1 } t%(tx)
= tQi{%(t )}+t%(m) t{tj L‘;t(t )}+1 jt( )}:t%{t%(m)}.

The equation is therefore equivalent to

By integration of this equation we get
d 2
t%(tx) =cy + / Zdt =y +2Int,

hence by a rearrangement,

d c2 lnt
t e
=7 t

Then by another integration,

dt 2Int
t$161+62/7+/ tH dt161+621nt+(1nt)2.

and we finally obtain the complete solution

Int)2 Int
x:(nt) +01'Z+C2'n77 teRy; c1,co arbitrary.

Example 2.4 Find the complete solution of the differential equation

A’z d
2 2

Type: An Euler differential equation. The equation is solved below in three different variants.

1) The standard method. If we change variable u = Int¢, t = €%, then it follows that the equation
is equivalent to the inhomogeneous differential equation
d*x dx

_ 2u
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of second order and of constant coefficients. The corresponding characteristic equation,
M3 +2=A-1)(\-2)=0,

has the solutions Ay = 1 and Ay = 2, so we conclude that the homogeneous equation has the
complete solution

r=cre® + e =it +cot?, e, €R; teR,.

Then we can either find a particular solution by guessing or by using the Wroniskian method.

a) Guessing. The right hand side 2e?* is a solution of the homogeneous equation. We therefore
guess on x = c - ue?" instead. Then

dx d2x
2u 2u 2u 2u 2u

T = cue®, — =2cue+ce®", —5 =dcue”+4ce™,

du dt?

which give by insertion

A’z dzx . .
— = 322 4 92 = deue®  +4ce® —6eue®™ —3ce® 4+ 2cue = ce?.
du? du

This is equal to 2e?%, if ¢ = 2. Hence a particular solution is e.g. & = 2ue®*, and then we get
by the linearity the complete solution (where u = Int),

T = 2t21nt+clt+02t2, c1,c2 €R; teRy.

b) The Wroriskian method. If we put

o1(u) = e and o (u) = et

then the Wronskian is

B el €2u 3u
v 2et ’

=€

wo=| 3 G

Then a particular solution is given by

pol) = o) [EROIY g, ) [ 22 g,

W (u) W (u)
u_22u 2u.22u
= 62“/%du—e“/%du
et et

= ™ / 2du — e / 2¢% du = 2ue®* — 2¢*"
= 2t2Int — 2t%.

Since —2t? already is a solution of the homogeneous equation, the complete solution is given
by

r=2Int +cit+cot?, e, €R; tER,.
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2) Guessing. If we put = t" into the Euler differential equation, then

thle - 2t‘fl + 22 = {n(n—1)—2n+241" = (n—1)(n—2)t"

This expression is equal to 0 when n =1 and n = 2. Since t' =t and ¢? are linearly independent,
it follows from the existence and uniqueness theorem for linear differential equations that the
complete solution of the homogeneous equation is

x:clt+02t2, c1,c2 €R; teRy.

Here the right hand side is a solution of the homogeneous equation, so we guess instead a particular
solution of the form z = c¢-t?Int, t € R,. Then
dx d*z
— 42 _
r =ctInt, Ef%tlnt, 7ol =2clnt + 3¢,

which is put into the Euler differential equation, giving
—|— 2x = 2ct? Int + 3ct? — 4ct? Int — 2ct? + 22t* Int = ct.

This expression is equal to 2t2, when ¢ = 2. Then it follows from the linearity that the complete
solution is

T = 2t21nt+clt+02t2, c1,c2 €R; teRy.
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3) By a “divine inspiration” we divide the equation by ¢* > 0. Hereby we obtain the equivalent

equation
2 _ ldx 2de 2 [1d
t ot dt2 2 dt 37 \tdt
_ dfldz 1 1 dflds
Toodt \tdt 27 dt |t dt
thus
d? 2

0=%

dt?
When this is integrated we get

d (x
E (;) = 21nt+C/2,

hence by another integration,

) €R,

(i)

teR,

4
dt

d

49
() )

t € Ro.

de\ _[1de d (1)
dt t2 dt dt \t2
2 rx

= (1)

% - c;t+c1+2/lnt-1dt=c’2t+c1+2t-1nt—2t
= 2t~1nt—|—clt—|—02t2, c1, o €ER;
The complete solution is
x:2t21nt+clt+02t2, c,c0 €R; te

Example 2.5 Consider the differential equation

2

d=y dy
2—2 492y =0
-+ +2y =0,

(6+1) a

teR,.

R,.

Prove that y = t=2, t € Ry, is a solution, and then find the complete solution.

If we put y = t~2 into the differential equation, we get

2t - (=2) - (=Bt H(6+1) - (=2)t 7342072 = {1212} 3+ {24272 =0,

proving that y; = ¢t~2 is a solution.

Then we norm the equation,

d?y 1 3\ dy
ﬁ*(ﬁz)—+

L =0
a VT

A linearly independent solution of the homogeneous equation is then

Y2 72

1 t
2 —2texp 5

or(-](t+3)) ¢ fom( e
el el

59
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The complete solution is

1 t+2 t
y201-t—2+02- 2; exp(—§>7 c1, co arbitrary, teRy.

Alternatively we put z = t?y, and then the equation can be rewritten in the following way:

2

dy dy d? (z d (z 2
_ u%Y Wyt (2 2
0 tdt2+<6+t)d + tdt2{ }+(6+t)dt{ }+t22

= 2ti —Ez—ki@ +(6+1) 2z+i% +Ez
n dt \ 3 2 dt 2 dt

2t{1d2z 4dz 6 }_E 6 dz 2 1dz 2

2ar B at s e ettt i e

2 d?z 2 dz t exp(t/2) d*z 1 1Y exp(t/2) dz
= zw*(‘t—ﬁz) it 2exp< 2){—t W+(§_¥>—t a}
B t\ d [exp(t/2) d ,,
= Qexp< )dt{ ; dt(t y)p-

If t € R4, then the equation is equivalent to

(jt {M ai (v )} -0

hence by an integration and a rearrangement,

d, o . t
o —(t*y) = Catexp <—§> .

Then we get by another integration,

t t
2y =1 + 62/texp <—§> dt = ¢y — 2¢5(t + 2) exp (—5) ,

hence with co = —2¢5,

1+ t+2 t
=C:—5+tC -——exp|—=].
) 1" 22 p B)
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Example 2.6 Consider the differential equation
d’y dy
12) t— —(t+1)— =0 teR,.
1) Prove that (12) has the solution y = €', t € Ry, and find then the complete solution.

2) Find the complete solution of the differential equation

-(t+1)—+y , teR,.

ar? dt

1) a) If we put y = e? into (12), then
te' — (t+1)e' +e' =0,

and we see that y = e satisfies the differential equation so y;(t) = e'.

b) Then we norm the equation (note that we have assumed that ¢ > 0),

d*y 1\dy 1
— 1 — [ — =0 t R..
dt? <+t>dt+ty ’ <R+
Then

fl(t):—<1+—>, t>0.

A linearly independent solution of (12) is then

) = nlt) [ o o (- }fl Wt a
= [ (s [ (1 Da)a
“fe

Pexp(t+Int)dt =e /e*ttdt

= e "{—e(t+1)} =—(t+1).
The complete solution of the homogeneous equation is

y=cret + et + 1), t € Ry, c1, cy arbitrary.

Remark 2.2 The check of the solution is straightforward.

Remark 2.3 Warning. If one forgets to norm, then one will obtain the following wrong
variant,

1 1
et/efm exp </(t+1)dt> dt = et/efzt exp (§t2+t> dt = ¢t /eXp <§ 2 — t> dt,

which cannot be expressed by elementary functions, and which furthermore is not a solution
of the homogeneous equation. A check gives e.g. that

d?y dy 12
¢y _ — (2 -1
t (t+ )dt+y (t? )exp( );AO

Download free books at BookBooN.com

61



Please click the advert

Calculus 4c-4 Euler’s differential equation

2) a) Guessing. When we count the degrees, we see that if y is a polynomial of degree n, then the
left hand side of (12) is again a polynomial of degree n. Hence we guess on

d d?
y=at> +bt+ec, Whered—ZZ=2at+bandﬁg:2a.
Then by insertion into the left hand side of the equation,
d*y dy 2 2
b= (D) ty = 2at—(t4+1)(2at+b)+at’ +bi+c = ~at’+(20—b—2a-+b)i+c—b

= —at’+c—b.

This expression is equal to t2, when
a=-—1 and b=c.

Now b = ¢ corresponds to
bt +c=b(t+1),

which is a solution of the homogeneous equation. Hence the complete solution of the inhomo-
geneous equation is

y = —t> +cret +co(t + 1), t >0, c1,co arbitreere,

because we can include b = ¢ into the constant cs.
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b) Alternative solution. First norm the equation

d? 1\ dy 1
y—(l—l——)—y—i——y:t, t>0,

dt? t)dt 't
thus
1
fit) =— (1 + Z) and u(t) = t.

Hence we get the auxiliary function

o) = ([ 50) ~exn (- [ (1)) = 1

Since 31 (t) = e*, a particular solution is e.g.

() = yl(t)/m (/ y1 (1)) u(t) dt) dt = et/e*%.tet </ el % -tdt> dt
= ¢ /te*t (/ dt) dt = e! /tQ(ftdt =el(—t? =2t —2)e P = —t2 —2(t 4+ 1).

The complete solution is

y(t) = —t2=2(t+1)+cie’ +&(t+1)
= 4l fe(t+1), t>0, cp,,co arbitreere,

where ¢y = ¢9 — 2.

Remark 2.4 Warning. If we forget to norm the equation, we get the following erroneous
variant

Q(t) = exp (— /(t - 1)dt) = exp (—@)

with the wrong “solution”

Jo(t) = et/e*% exp <%) {/e1t exp (@) t%lt} dt.

This function cannot be expressed by elementary functions.
¢) The Wroriskian method. When we norm the equation, we get as before,

d?y 1\ dy

1
F_(1-1-2)%4—;3/:1?, dvs. u(t) =t.

Put y;(t) = €' and y»(t) =t + 1 [taken from (1)]. Then

) wa(t) | | et t+1 Lt
W“)“ PAOIRA0 B e
Now, compute
WO= 1y s "’ ¢ o1 |70
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Wa(t) =

10 0 | _|e 0
ni(t) ult) || et
Then a particular solution is given by

’ = te'.

i) =m0 [ o der ) [ @

—t2—t tet
t
= 1
e/ — dt + (t + )/7t6tdt
= et/(t+1)e_tdt—(t+)/dt (partial integration)
= ¢ {—(t-i—l)et +/etdt} —t(t+1)

= —t—1-1-t*—t=—t>-2(t+1).
Since —2(t + 1) = —2ys(t), The complete solution is

y(t) = —t* + cret + ot + 1), t >0, c1,co arbitreere.

Remark 2.5 Warning. If we forget to norm the equation, then we get the wrong solution
t2
Jo(t) = = —§(t+ 1)+ (—t* = 3t - 3).

A check in the equation shows that this is not a solution.

Remark 2.6 The equation can in principle be solved by means of the power series method,
and the result looks apparently nice. We get for instance for the homogeneous equation
(12) after some computations,

oo

Z(n = D{(n+ D)apt1 —an}t" =0,

n=0

hence by the identity theorem
(n—=1{(n+Dapt1 —an}t =0 for n € Ny,

(the summation domain). There is, however, a trap here because n — 1 = 0 for n = 1, thus
0-{2a3 —a1} =0 for n = 1.

This equation is fulfilled for all choices of the constants a; and as, so we conclude that a; are
as the arbitrary constants. The trap is, that we cannot get this result if we first divide by
n — 1 to obtain

(n+1)ap+1 = ap.

The error is of course that we divide by 0, when n = 1.
The correct variant is

(n+ Dapt1 = an for n € No \ {1},

where a; and as are arbitrary constants. It is possible to solve this equation, but it requires
some deftness. The trick is to multiply by n! and then define b,, := nla,,).
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Example 2.7 Consider the differential equation

2y d
(13) tﬁg—d—i—(t—i—l)yzo, teR,.

1) Prove that (13) has the solution y = e~ ", t € Ry, and then find the complete solution.
2) Find the complete solution of the differential equation

Py dy 5
t— — — —(t+ 1)y =t teRy.

The equation can be solved in different ways. We first demonstrate the traditional one:
1) If we put y = e~ %, then
te™'+et—(t+1)e " =0,
and y = e~ ! is a solution of the homogeneous equation.

2) By norming the inhomogeneous equation we get

d? 1d 1
_y__y(H;)yt.

Hence a linearly independent solution of the homogeneous equation is given by

1 1 1
pa(t) = e*t/e‘”exp (/;dt) dt = e*t/te?’5 dt = et {5t62t — 5/6” dt}

1
1 e t(2te? — e?) = —(2t — 1)e'.

e~ =

The complete solution of the homogeneous equation is
y=cre '+ co(2t — 1)el, c1, co arbitrary.

There are several ways to find a particular solution of the inhomogeneous equation.

a) Guessing. If we put y = at + b, then

d*y dy 2
by — o — (t+1) = —a—(t+1)(at+b) = —at®— (a+b)t—(a+b).
This expression is equal to t2, if a = —1 and b = 1. The complete solution is

y(t) =1 —t+cre " + cote (2t — 1).

b) Computation by a solution formula. We first identify u(t) = ¢, cf. the normed equation,
and we have already shown in (1) that y;1(t) = e~*. Then we get

o) <o ([ 1) = (~ [ Lar) =
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By insertion into the solution formula we obtain the complete solution
1 .
y(t) = wyi(t —————— |C y1(H)Qt)u(t) dt| dt + ¢
w0 = nO{ [ [+ [woaouo ] dal
1
= @t{/teZt {52+/et-t-tdt}dt+c1}
= cie t 4 éyet /fe2t dt + et /1&621/ (/ et dt) dt
R B T Y —t t
= cie "+ ége §te —Ze —e te" dt

1
= cet+ 1 Goel (2t — 1) — e H{te! — €'}
= 1—t+ce " +ea(2t —1)e,

where we have put ¢y = %52.
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¢) Computation by the Wroriskian method. When we put y;(t) = et and y»(t) = (2t —1)e?
and u(t) =t we get

et (2t —1)e et (2t —1)et
¢

wit) = ‘ —e b (2t +1)e ) 4tet = 4,
0 (2t—1)et
Wl(t):‘ X E2t+1g , (2t—1)
—¢
Wa(t) = ‘ _ee—t (t) ‘ =t

Then by insertion,

yo(t) = yl(t)/mm/;((tt)) dt + ya(t) WVI//Q((:)) dtze_t/_t(in;l)etdt_i_(%_l)et/te__tdt

1 1
- —Ze_t/(Qt— De dt + Z(2t— 1)et/e_tdt
e 10, IR AT 0 ) G 07 VL S O VS RO S 0 VI
= -3¢ {(Qt 1)e 2/6 dt} 4(275 1) = 4(2t 1)Jr2 4(215 1)

= i{l—2t+2—2t+1}=1—t,
and the complete solution is
y=1—t+cre "+ ca(2t — 1)et, teR,
where ¢y and ¢y are arbitrary constants.

Finally, it is possible also to solve the equation directly by some clever tricks.

d
Since y = e~ ! is a solution of the simpler equation d—y +y = 0, the idea is to rewrite the equation (13)

as a differential equation of first order in z = % + y. When we add t(cil_t - tE = 0 to the left hand
side of (13), we get
d’y dy d?y dy
L (41 = t—24t—=—(t+1)
tm (t+1)y tdt2+tdt (t+1) { }
d (dy Y dz
tdt{dt+} (t+){d+} [tdt (t—i—)}
1 d y 1 1
- g \a YT\t
dy

IO et O A
- tztdt{ [%MH : tdt{te%dt(ty)}'

Then we can solve (2) [and intrinsically also (1)] by a couple of simple integrations, because

d 1 d
2t 2
e E{te%dt( y)}:t

dt
d
dt
1
t
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can be written as

d(1d,, »
a{@wy)}:e -

When this equation is integrated, we get with some arbitrary constant ¢o that

1 d

m g (CY) =T+,

which we reformulate as

t ~ L ot t
— (e = cote” — te".
dt( Y) 2

By another integration and another arbitrary constant c; we get

ety =1+ Co /te% dt — /tet dt,

hence
—t ~  —t 1 2t 1 2t —t t
y=cre '+ ége §te — 3¢ —(t—=1)=1—t+cre "+ c2(2t —1)e’,

where ¢y = %52.
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3 The exponential matrix
Example 3.1 Find exp(tA) in each of the following cases.

0

1o
O)A:(ég), @ A=[03 o],
00 -2

1 -5 11
wa-(1 ) wa-(g )
1) Since A is a diagonal matrix, we immediately get
e 0
exo(tA) = () )

2) We here find for the same reason,

et 0 0
exp(tA)=1 0 ¥ 0
0 0 e 2

3) The eigenvalues are the roots of the polynomial

‘ 1—X\ -5

V2 _ _\2
. _1_A’A 1+5 =22 +4,

hence A = £2i. Since the roots are imaginary and complex conjugated, we first compute

(1)) )

Then it follows by the definition of the exponential series that
(o]
1 . -
exp(At) = Z — A"t (split into even and odd indices)
n!
o0
— Z A2n t2n + Z A2n+1 t2n+1

1)n 2n 42n ( 1) 2n 2n+1
2 t“" 1+ Z m 27"t A

( " 2 (-pn ont1 1
2t)°" 1 —— (26" . = A
T (2) +Z nr T3
cos2t+§sm2t fgsin2t

= cos(2t)I+sin(2t) - - A =

N =

% sin 2t cos 2t — % sin 2t
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4) It is seen by inspection that the eigenvalues are A =0 and A = 1. Since

(D)) -( )

it follows by induction that A™ = A for every n € N. Then the defining series becomes

exp(At) = I+Z A"t”_I+Z A—I+(e—1)A
n= 1 n= 1
B 1 0 . el—1 e'—1Y\ (e e -1
o 0 1 0 0 ~\0 1 '
t gt
Example 3.2 The matrix ( % ette is of the form exp(tA) Find the matriz A by exploiting the

properties of the columns in a matriz of the form exp(tA).

It follows from
et —tet
0 ¢

0 _(.e0
eO Oeoe ):I for t =0,

=¥ >0, and (

that the matrix can be written in the form exp(tA).

Then we can find the matrix A in various ways:

1) We find by a differentiation,

d et —et —tet
pn exp(tA) = Aexp(tA) = ( 0 ¢ ) .

By putting t = 0, we get
1 -1
A= ( bl > .
. .odx )
2) (“The hint”). The equation p7ie Ax has the complete solution
r1\ _ [ @ el — cotet
Ty ) coel :
Hence
d ([ B (c1—ca)et —czte cie —czte n —cqet
dt \ x2 N coe 0
_ T + 0 -1 T _ -1 X1 7
€To 0 0 €T9 0 1 X9
and we conclude that

()
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Example 3.3 Find by means of the eigenvalue method the complete solution of

dx 1 1
Then find exp(tA).

Clearly, the eigenvalues are \; = 1 and Ay = —2. The corresponding eigenvectors are cross vectors of
the first row (1 — A, 1), thus a possibility is

AL =1, Vi = (17>‘1 - 1) - (170)a

)\2 = —2, Vo = (1,)\2 - ].) = (1, —3)

The complete solution is
(1 ot 1\ (e e c1
X = ac ( 0)72 " =3)7 o =32 ) )

There are now a couple of ways to find the exponential matrix exp(tA).
1) First note that exp(At) = ®(¢)[®(0)]~*. Since

—2t

et e 1 1
P(t) = ( 0 _3e-2 ) , we have ®(0) = ( 0 _3 ) ,

where det ®(0) = —3, hence

wot= 5 ()4 )-8 )

and whence

ot o2 1 1 ot Lot _ 12
_ — 3 3
exp(At) = ( 0 —3e2 ) ( o 1 )= o2t :
2) Definition by a series. Since A and I commute, we obtain by subtracting A\;I = I and then
adding it again,
exp(At) = exp((A — I)t + It) = e’ exp(Bt),

where

0 1
BAI(O _3),

and

2 (0 =3\ _ 0 1y _
B (0 )8 1)

Then by induction,

B" = (~3)""'B, neNl,
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Example 3.4 Find the complete solution of the given system below

(3 )

The eigenvalues are the roots of the polynomial

1-X 4
-2 3=

‘:(/\—1)(/\+3)+8:)\2+2)\—|—5: (A+1)%+4,

thus A = —1 + 2i. since we have complex conjugated eigenvalues, we have at least four reasonable
methods of solution.

1) The eigenvalue method. If A = —1 + 2i, then the corresponding eigenvector is a cross vector of
(2 —2i,4), e.g.

= (o) () (2)

Then a fundamental matrix is given by

®(t) = e cos2t(a B)+sin2t(—F a)} =e ! {coszt ( j ?) + sin 2t ( 7(1) j )}

ot 2cos 2t 2sin 2t
—cos2t —sin2t cos2t —sin2t |-

The complete solution is

T1\ _ ot 2cos 2t 4ot 2sin 2t
e ) — cos 2t — sin 2t 2 cos2t —sin2t /-

2) The exponential matrix. If we choose a + iw = —1 + 2i, then
- 1 10 1 _ 1 4
_ t Lo Lot
exp(At) = e {cos2t+2sm2t} (0 1>+2e s1n2t<_2 _3>
4 [ cos2t+sin2t 2sin 2t
- ° —sin 2¢ cos2t —sin2t ) -

The complete solution is

1\ _¢ [ cos2t+sin 2t et 2sin 2t
T = o€ —sin 2t C2€ cos2t—sin2t ) °

3) It follows from A = —1 =+ 2¢, that the real structure of solution necessarily must be of the form
1\ _ [ are P cos2t + aze Fsin2t
29 )\ bre tcos2t+bge tsin2t |-
Since

d (x (—a1+2a2)e™t cos 2t+(—2a1 —ag)e ™t sin 2t
dt \ z2 ]\ (=b1+2bs)e "t cos 2t +(—2b1 —bo)e~ sin 2t
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and

1 4 1\ (a1+4b1)e™t cos 2t + (ag +4by)e ™t sin 2t
-2 =3 xe )\ (—2a1—3b1)e™ ! cos 2t+(—2by —bo)e tsin2t )’

we obtain by an identification of the coefficients that

—ay + 2as = a1 + 4bq, dvs. by = —%al + %ag,
—by + 2by = —2a1 — 3by, dvs. by + by = —ay.

We see that
1 1 1 1
b2 = —5&1 — 5&2 and b1 = —§Cl1 + §a2.
If we put a; = 2¢; and as = 2c¢s, then the solution is given by
1 B 2¢1etcos 2t 4+ 2coe b sin 2t
29 - (—c1 + ca)e b eos 2t + (—cp — ca)e tsin 2t

et 2cos 2t Yoot 2sin 2¢
! —cos 2t —sin 2t 2 cos2t —sin2t ) °
4) The “fumbling method”. It follows from
d 1(d
%:zl—kélxg, thusmg—z{%—zl},
and
dl‘g
dt
that
dxs Pxy  dry dzy
— = — —— = —-8r; — 1225 = —8x1 —3—— +3
dt — dt2 dt B TR
hence by a rearrangement,

2 d
Wilm%mml —0, where R2 + 2R+ 5= (R+1)2 +22.

The complete solution is

= —2x1 — 3z,

21 = cre b cos 2t + coetsin 2t,

where
% =0 {—e_t cos 2t — 2e ! sin Qt} + ¢y {_e—t sin 2t + 2e~t cos Zt} .
Hence
= % {% B xl} - %Cl {—2e"cos2t—2¢ 7" sin2t} + 362 {2e" cos 2t —2e " sin 2t}

1 1
= clie*t(f cos 2t — sin 2t) + 56267t(COS 2t — sin 2t),

and summing up,

T\ et cos 2t 4ot sin 2t
e ) —%cos2tf%sin2t 2 %COSQt*%SiHQt '
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Example 3.5 Given the linear system

a0 )0) () 2=( 1)
Compute exp(At)

Then compute by means of the general solution formula the particular solution (z,y) of the system,
for which

((0),5(0)) = (v1, v2).

1) Direct determination of exp(At). First we note by induction that

n_ (1 n
A<0 1), n € N.

Then by the exponential series,

S 1 ,/(1 n —~t" (1 n
exp(tA):I—kZEt A :I+Zat (0 1):2—(0 1).
0

n=1 n=1

It follows from

oo oo o0
tn tn tn+1
—n= = = tet
DT RED Dl e D Dl el
o — (n—1)! S
that

et tet
exp(tA) = ( 0 et )

2) Variant of the eigenvalue method. Clearly, A = 1 has algebraic multiplicity 2 and geometrical
multiplicity 1. Therefore the complete solution of the corresponding homogeneous equation must
have the structure

z\ [ aie’ +astet
y )\ bret + bote!
where
d(z\ _ [ (a1+ as)et + aste
dt \y )\ (by +ba)et + batel
and
11 z\ [ (a1 +b1)et + (az + bo)te!
0 1 y ) biet + bote! ‘
When we identify the coefficients, we get

a1 + a2 = ay +bl, hence b1 = az,
b1 + by = by, hence by = 0.
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Choose a; and as a the arbitrary constants. Then the solution is

t t t t t t
r\ _ [ are’ +aste” \ e te" \ [ e te ay
()= () ) () = (5 20) (22):

The fundamental matrix becomes

B(1) = (et te! ) where ®(0) = T = ®(0)~ .
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We shall now apply the complicated solution formula. We find
t
() - () ()
Y 0 1
t t t -7 —T
o 1 e’ te e —Te T
- (o)) (5 @) L0 =) ()
t t t -7 __ —T
_ (U16+U2t6)+(6 tet)/(Te 7776 )dT
0 e 0 e
B viet + vgte et tet 0 t 0 B 0
= ( )-I— ( 0 et ) (1—et> [because /0 e ) T et
B viet + votel n tet —t\ [ viet + (vo + 1)tet —t
n voe! et—1 ) (ve +1)et — 1

Even if these computations are unexpectedly easy to perform, it follows that it also here would be a
better procedure just to guess a particular solution of the form

r\ [ ait+as . —t
y o blt + b2 - -1 ’
The details are left to the reader.

Example 3.6 Consider the system

d(xz\ (01 T 1 —t
a(0)-(T o) () (1) rem

1) Find exp(tA) for A = (2 (1)>

2) Apply the general solution formula to find that particular solution x(t), for which x(0) = (1,0)7

1) As usual we we have several solution possibilities.

a) Since A% =1, it follows immediately by the exponential series that

exp(tA) = Z—t”A”—IZ Z

n=0
-~ cosht 0 n 0 s1nh t\ [ cosht sinht
o 0 cosht sinh ¢ 0 ~ \ sinht cosht /-~

b) The eigenvalues are the roots of the polynomial

t2n+1

’—A 1

Y ‘:A2—1=(A—1)(A+1),

thus A = £1.
If A =1, then one eigenvector is (1,1).

If X = —1, then one eigenvector is (1, —1).
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The complete solution of the homogeneous system is

(£)=a()or(2)= (0 2 (3)

Then we get the fundamental matrix,

20=(1 ;) o 20 (

The exponential matrix is
et et 1 1\ [ cosht sinht
et —et 1 —1 )  \ sinht cosht )~
¢) We shall now apply the solution formula:
t —T
( 1 ) = exp(tA) ( L ) +exp(tA)/ exp(—TA) ( c ) dr
To 0 0 e
cosht sinht 1 " cosht sinht t cosht —sinhr e 7 d
sinht cosht 0 smh t cosht 0 —sinh7  coshr e )47

cosht n cosht sinht
sinh ¢ sinh¢ cosht

SIS NI
N[00 [ =
v

exp(tA) = ®(1)®(0)~! =

dr
- cosht 1 _ot\ [ cosht + sinht

o (sinht)+§(16 )(sinht—i—cosht)

B cosht 1 o (€8 _ [ cosht sinh ¢
- (sinht)+§(1_e )(et = sinne )\ sinne
B ot B ot

- 2sinht T \let—et |

Example 3.7 Consider the homogeneous linear system

dx 1 2
T = Ax, whereA—<4 _1>.

1) Find the complete solution.
2) Find the exponential matriz exp(At).

Here we give five variants.

Overriding we first find the characteristic polynomial, which is applied in all the following variants,

‘1>\ 2

4 1) ‘ = (A=1)A+1)-8=212=9 = (A=3)(A+3).

We conclude that the eigenvalues are A = +3.

First variant. The eigenvalue method.
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1) Consider the (2 x 2) matrix A. An eigenvector corresponding to A is a cross vector of e.g. (1—\,2),

A—1 1
where we can choose v = (1, T) by adding the factor 3

If A = 3, then an eigenvector is vi = (1, 1).
If A = —3, then an eigenvector is vo = (1, —2).

The complete solution is

1 1 et 3t c

3 -3 1
(14) X_Clet<1>+02€ t<_2)_<63t 93t e )’
where ¢y and ¢y are arbitrary constants, and ¢t € R.

2) By (14) a fundamental matrix is given by

6St 673t 1 1
(1) = ( RV ) ,  where ®(0) = < 1 _9 > , det®(0) = -3,

hence
1/-2 -1 172 1
-1 _ _* _ =
®(0)" = 3(—1 1) 3(1 —1)’
and
1 e3t €—3t 2 1 1 2€3t + e—3t €3t _ e—St
exp(At) = ®()®(0) ! = 3 =3
e3t 26—315 1 =1 2e3t _ 26—315 63t + 26_3t
1 (3 cosh(3t) + sinh(3t) 2 sinh(3t)
3 4 sinh(3t) 3 cosh(3t) — sinh(3t)

where we have given the result in two equivalent versions.

Second variant. Direct determination of the exponential matrix. In this case it will be
convenient to interchange the two questions of the example.

1) It follows from

s (1 2 1T 2\ (9 0\ . .o
a= (5 2) (0 A)= (0 9) ==

that
AP =3%"T and AT! = A2"A = 32"A.

Then we get by the exponential series (again with two equivalent versions)

A oo tn A oo th A2 oo t2n+1 A2 . 0 (3 Qn 1 0 2n+1
¢ _ AT — v n s n _ -
exp(A?) nz:%n! 7;)(271)! +7;)(2n+1)! HZ:: n)! 32:: 2n+1
1 3 cosh(3t) + sinh(3t) 2sinh(3t)
= cosh(3t)I + 3 sinh(3t)A = =
4 sinh(3t) 3 cosh(3t) — sinh(3t)
263t | =3t Bt _ =3t

W =

26315 o 267315 6315 + 2673t
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2) The complete solution is obtained by taking all the possible linear combinations of the columns of

exp(At). The common factor 3 can be included in the arbitrary constants, so
263t + e—3t €3t o e—3t 1 _ 1
x(t) = «a ( 963t _9e—3t | T2 | N (2¢1 + cp)e™ 1]t (c1 —ca)e™™ 9

1 1
_ ~ 3t ~ -3t
= (1€ <1>+026 <_2),

where t € R, and where ¢y, ¢o, ¢; and ¢y are arbitrary constants.
Third variant. The exponential matrix computed by a formula. Here we only show (2).

Since n = 2 and the eigenvalues are A = 3 and p = —3 , thus A # u, we get

At ot A put At 1 1
exp(At) = N _Z A4S - Ze = (e e ™A+ (37 4 3¢™)1

1
= 3 sinh(3t) A + cosh(3¢)I,

and the example is then concluded as in one of the other variants.
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Fourth variant. The fumbling method. We first expand the system of equations,

d d
% =11 + 21, thus 2z, = %—xl,
dl‘g

d
- = 4x1 — w9, thus E(ng) + 229 = 817.

By eliminating x5 we get

2 2
1(2332) + 29 = <d L %> + (dml —Z‘1> = & —x1 = 871,

dt 2 dt dt dt2
hence
d2.’I}1 2

The complete solution is
r1 = et + c267‘3t, c1,co arbitrary,

so by insertion,

dl‘l

o T = (361€3t — 3626737:) - (cleSt + 62673)5) = 2¢1e% — depe™,

21’2 =

thus
Ty = cret — 2ch_3t,

where ¢; and ¢ are the same arbitrary constants as for .

Summing up we have

3t —3t
r1\ cie’t + cqe . 3t [ 1 _3t 1
( To ) - < 13t — 2c9e 3t ) - ac < 1) Tee -2 )7
where ¢; and ¢y are arbitrary constants.

Then we continue as in the first variant.

Fifth variant. Caley-Hamilton’s theorem. Recall that the characteristic polynomial is A2 — 9.

Then we get by Caley-Hamilton’s theorem that
A2 91 =0, thus A% = 91

This implies that there exist functions ¢(t) and 1) (t), such that
exp(At) = )T+ p(H)A,  ¢(0) =1 0g ¢(0) = 0.

We then conclude from

%exp(At) = A exp(At)
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and

< op(Af) = ¢ (O + /(1A

and

A exp(AL) = (DA + G()A2 = 9p(T + p(t)A,
by identifying the coefficients of T and A that
(15) ¢'(t) =9¢(t)  and  @'(t) = o(t),

where

{ o

If we put the latter equation of (15) into the first one, i.e. eliminating o(¢), then

() =99(),  ¥(0)=0, ¥(0)=1,

L ¢'(0) =99(0) =0,
0, ¥'(t)=(0) =1
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The complete solution is

1 (t) = ¢q sinh(3t) + c2 cosh(3t).

We conclude from ¢(0) = 0 that co = 0, and from ¢'(0) = 1 that ¢; = =, so

P(t) = %sinh(?)t).
Finally,
(t) = ¢'(t) = cosh(3t),
SO summing up,
exp(At) = o(t)I + ¢ (t)A = cosh(3t)I + ésinh(Bt)A,

and we continue as in anyone of the previous variants.

Example 3.8 Let A = ( g ::13 >

1) Find the complete solution of the homogeneous system of differential equations,

d
—X:Ax, teR.
dt

2) Prove that

D R
exp(At) = < et —2e=2t _e—t 4+ 92t |> teR.

3) Find the solution of the inhomogeneous system of differential equations

dx 3et

for which x(0) = (2,1)7.

Again there are several variants.
1) The brazen (though legal) variant.

a) Start with (2). Then exp(At) is the unique solution of

d

ZB()=AB(t), B(0)=L

so we shall only check that these equations are fulfilled for

Q¢ t—e72 et g2 (2 -1 o -1 1
B(t) = < et — 22t _e=t 92t | T 2 -1 te _9 9 |-
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Clearly, B(0) =1, and

d (21 o (2 =2
EB(t)—e (_2 1>+e 4 4
and
0 -1 2 -1 0 -1 -1 1
_ -t —2t
AB() = e (2 3>(2 1>+€ (2 3)(2 2)
_ ot =21 (2 =2\ _ d
= e (_2 1 +e 4 o4 )= dtB(t)
and we conclude that B(t) also fulfils the system of differential equations, and we have proved

(2)-

b) (Question (1)). It follows from (2) that the complete solution of (1) is
9e—t _ g2t et 4 2t
x(t) €1 ( et —2e~2 ) T < —e 7t +2e72
(1 (1
(2¢1 — ca)e )t (—c1 + e 5 |-
c) We guess a solution of the form x(¢) = e’(a,b)”. Then by a rearrangement,
t3_d_X_ _tfa) (0 -1 a\ (1 1 a
e(o =a A=l )72 3 ) )7 2 4 )0 )

which corresponds to the system of equations

a+b=23 and —2a+4b=0.

It follows immediately that it has the solution ¢ =2 and b = 1.
The complete solution is

X(t)zet(?)-l-éle_t(})-f—ége_%(é).

The initial condition gives ¢; = ¢ = 0, hence the solution is

x(t)_etG), teR.

2) The standard method

a) The eigenvalue method. The characteristic polynomial is

‘ 05/\ _?i)\ ‘ = AA+3)+2 = A2 43 +2 = A +1)(A+2),
so the eigenvalues are A = —1 and A\ = —2. A corresponding eigenvector is a cross vector of
(=, —1), thus e.g. (1,=)).
If A = —1, then an eigenvector is vi = (1,1).
If A = —2, then an eigenvector is vo = (1,2).
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Calculus 4c-4 The exponential matrix

The complete solution is

(1 _ 1 et e c
x(t) = cre t<1)+c2e Zt(2>=(6t 26%)(C;>,

where ¢; and ¢y are arbitrary constants.

It follows from (a) that a fundamental matrix is

—t —2t

e e 1 1
®(t) = ( ot 9p-2t ) where ®(0) = < 1 92 ) .
It follows from det ®(0) = 1 that
-1 2 -1
hence
—t —2t —t —2t —t -2t
. 1_ (e e 2 -1\ [ —2"-e¢ —e ‘+e

eXp(At) - ‘P(t)q’(O) - ( et 267215 ) < —1 1 ) - ( 2e—t — 267215 _et + 267% ) :

It is of course possible to apply the same method as in the first variant. Here we shall, however,
demonstrate the horrible solution formula,

t T
x(t) exp(At) ( % ) + exp(At)/ exp(—AT) ( 38 ) dr,
0
just to see how big the computations become.

We always first compute the integrand separately,
exp(—Ar) 3e” —e’T +2e7 ¥ —e” 3e™\ [ —3e3 + 627
P 0 —2e2T 4 2e7 2e%T —eT 0 T\ —6e3T 6627 )

Then we compute the integral,

t T t 37 27 3t 2t
3e o —3e°" + 6e [ —e’"+3e (2
/0 exp(~AT) ( 0 ) dr = /0 ( —66%7 + 6627 ) dr = ( —2¢3 4 3¢% ) < 1 ) '

Finally, we put the above into the solution formula,

_egt + 362t

2 2
x() = exo(an (7 )+ew(an ( Tl ) -enian (1)
B Qe t—e 2t _ptqe2t —3t4+3e? \ [ 2e'-1 —e'+1 —'+3
- 2e t—2e72 et 2e72 —2e3t4+3e2t ) T\ 2e'—-2 —e!'+2 —2et+3
B (2t —1)(—e'+3)+(e " +1)(—2e'+3) \ _ [ —2e*+Te ' —3+2e* —5e'+3
N (2et—2)(e7t+3)+ (e t+2) (2! +3) ) — \ 2% +8e!—6+2e* —Tel+6

_ (2)
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Calculus 4c-4 Cayley-Hamilton’s theorem

4 Cayley-Hamilton’s theorem

Example 4.1 Let
a b
A—(C d)’ det A = ad — be # 0.

Find A=Y, Then formulate a simple mnemonic rule for the inversion of reqular (2 x 2) matrices.

If we define

B:( d b>’
- a

where we have interchanged the diagonal elements and changed the signs of the remaining elements,

then
b d —b ad — be 0
d)(—c a)z( 0 ad—bc):detA.I’

ABz(
and
d —b a b ad — be 0
BA:(—C a)(c d)z( 0 ad—bc):detA'I’
and it follows that

1 1 d —b
Al = B = :
det A ab—bc( —c a>

o

Mnemonic rule. If A is a regular (2 x 2) matrix, then the inverse matrix A~! is obtained by
interchanging the diagonal elements, change the signs of the remaining two elements, and finally
dividing by det A.

Example 4.2 1) Find a fundamental matriz of the homogeneous system

d
d_)t(:<(5) _23>X, teR.

2) Find the complete solution of the system

dx (0 2 (6
(16)E_(5 3>x—e(0>, teR.

Hint: Guess a solution of (16).

1) The characteristic polynomial

= N T B 3\N* [(7\°
P()\)—’ 5 _3_)\‘—)\ +3/\—10—<)\+§) —(5) =A=2)(A+5)
has the roots A =2 and A = —5. We may now proceed in various ways:
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Calculus 4c-4 Cayley-Hamilton’s theorem

a) The eigenvalue method.
-2 2

If)\:2,thenA—2I:( 5 5

). By taking the cross vector we see that we can select the

eigenvector vy = (1,1).

5 2

If A= -5, then A + 51 = (5 9

>. By taking the cross vector we see that we can select the

eigenvector vy = (—2,5).

The complete solution of the homogeneous system is

1 _ -2 et 275t ¢l
xC1€2t<1)+02€ St( 5 >(62t 5e—5t ey )

It follows that a fundamental matrix is given by

o2t _9p—5t
e2t 55t .
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Calculus 4c-4 Cayley-Hamilton’s theorem

b) The exponential matrix found by means of Caley-Hamilton’s theorem.

2 2
3 7
Since P(\) = ()\ + 5) — (§> it follows by Cayley-Hamilton’s theorem that
3.\ [T\’ 3.\*  (7\’
A+I) —(2) I= hus B?=(A+:-I) =(-) I

where we have put B = A + gI.

Now, A and I commute, so we get by the exponential series that

o0 —exn (20 (a4 20)) ) = (~20) o)

) n=0 =0
3 [e%¢] 1 7 2n e’} 1 7 2n
- _ 2y S (R T !
eXp( 2 ){Z 2n)! (2) P Ncrny (2)
3 7 2 7
= exp (—5 t) {cosh §t> I+ ?sinh <§t) B}
Loy, 1 5 3
B 56 +§€ 0 +l( o 75t) 5 2
- 0 le%—i—le_f’t A 5 3
2 2 2
2 2
2 | 2 5t 2 2 _5¢
7€ TRt ¢ TRl
O or O 5 2 o _5¢ 7
7€ TR¢ T e Tl

which is the exponential matrix corresponding to the problem.

5

2) Since e! are not of the same type as €2 or e 5!, a reasonable guess is a solution of the form

[ a dx (a ,
x—<b) Wherea—<b)e.
t

Then by insertion into the matrix equation, followed by a multiplication by e™*,

a\ (0 2 a\ (6 d -1 2 a\ (6
b))~ \5 —3)\ b o) ¥ s —a)\v) o)
By Cramer’s formula or just some fumbling we find

a=4 and b=25,

and the complete solution is

X(t)=(§>8t+81(1)62t+62(52>6_5t, tER,

where ¢, and ¢y are arbitrary constants.
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Cayley-Hamilton’s theorem

Alternatively one may apply the unfortunate solution formula

Xo(t) = <I>(t)/<1>(t)*1u(t) dt

in order to obtain a particular solution.
a) It follows from

e?t  —2e75t L
(1) = o2t 5ot where det ®(t) = Te

B e3t 56—515 26_5t 1 56_2t 26_2t
‘I)(t) 1:7< _e2t e2t ) 25( bt et >

b) The integrand is

_ 1/ 5e 2t 2¢72 —6e? 1/ —30et
®(t) " 'u(t) = z ( et oot > ( 0 ) = ;( 66t

¢) Then by integrating each coordinate separately,

_ 1 [ 30e!
/<I>(t) 1u(t)dt:?< i )
d) A particular solution is
et 25t 30et
2t 5e—Bt 6t =
e) The complete solution is

4 et —2e7 0 c
X(t) = ( 5 ) et + ( 6215 56—5t C; ’ te Rv

where ¢; and ¢y € R are arbitrary constants.

4

).

28et 4\
= e .
35et 5

89
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Calculus 4c-4 Cayley-Hamilton’s theorem

Example 4.3 Let
a b
a=(00)
be any (2 x 2) matriz, and let
p(\) = det(A—AI) = A\ —(a+d)A+(ad—bc) = (A—A1)(A—A2)

be the corresponding characteristic polynomial. Prove that

p(A) = (A — MI)(A — X\I) = 0.

When we identify the coefficients of the characteristic polynomial we get
AM+A=a+d and M Ay = ad — be.
A computation of p(A) gives

p(A) = (A—MI(A = XI) =A% — (A + A2)A + M Al
A% — (a+d)A + (ad — be)I = A{A — (a + d)I} + (ad — be)I

() (L)) e

= (“ b)<d b)—|—detA-I:A{—detA-A‘l}—i—detA-I:O,
c d c —a

where we have applied the result of Example 4.1.

Example 4.4 Let A be any (2 X 2) matriz.
1) Prove that

A? = (A4 p)A — M,

where \ and p are the two roots of the characteristic polynomaial for A.

Hint: Apply the result of Example 4.3.

2) Conclude from (1) that there exist functions p(t) and (t), such that
exp(At) = p(t)T + (1) A,

where ©(0) =1 and ¥ (0) = 0.

1) It follows from Example 4.3 that
p(A) = (A=AI)(A—pl) = A2—(A\4p) A+ ul = 0.
Then by a rearrangement,

A? = (A4 p)A — Ml
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Calculus 4c-4 Cayley-Hamilton’s theorem

2) The exponential matrix is defined by the matrix series
= 1 1
exp(At) = I+Z1 A" = I+At+z:2 AT,

where the radius of convergence is co.

According to (1) every A™, n > 2, can be written as a linear combination of I and A, by using
the recursion formula

A" = A2 A2 = A+ ,LL)A”_1 — A\A" 2 n > 2.

The coefficients only increase as a polynomial, while the denominator n! is of factorial size. There-
fore, this process cannot change the radius of convergence, so we conclude that exp(At) can also
be written as a linear combination of I and A, where the coefficients ¢(t) and ) (t) are given by
power series in t of radius of convergence oo,

exp(At) = () I + ¢ (t)A.
If we here put ¢ = 0, then
exp(A0) =T = p(0)I+4(0)A,

and it follows that ¢(0) = 1 and t(0) = 0, because we may assume that I and A are linearly
independent. (There is nothing to prove if this is not the case).

't
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Example 4.5 Let A be a (2 x 2) matriz. We proved in Example 4.4 that
A% = (A4 p)A — M,
and
exp(At) = () I + ¢ (t)A, »(0) =1 and (0) = 0.
Prove that ¢ and ¢ are the unique solutions of the system of equations
¢'(t) = =Aup(t),
¢ (t) = A+p)e (1) = Aup(t) =0,
Then find exp(At) explicitly.

Hint: Split the investigation into the to cases (1) X # p, and (2) A\ = p.

We shall only check the differential equation for exp(At),

L exp(an = 4 I+§:lA"t” —i;Ant”’l—Aex (A1)
at P S odt ! _n:1(n_1)! B P '

Since

% exp(At) = & (DT + ' (1) A

and
A exp(At) = p(t)A + (A = (A + )y (t)A — P(H)AL + (1A,
it follows by identification of the coefficients that

@' (t) = =Aup(), ¢'(0) = =Auy(0) = 0,

P(t) = A+p)v(t)+o(1), ¥'(0) =04 ¢(0) = 1.
When the latter equation is differentiated, we get
V() = (A+p)Y () +¢'(t) = A+ (t) = A (t),
hence by a rearrangement,

d*y dyp _ a0 ) —
Co = O () =0, $(0) =0, ¥'(0) = 1,

and of course
Q') = —d(t),  9(0) =1.

The characteristic polynomial for the differential equation of v is
R?— (A + R+ = (R—N(R— p),

with the roots A and pu.
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Calculus 4c-4 Cayley-Hamilton’s theorem

1) If X # u, then
Y(t) = creM + coett
where

P(0)=c1+e2=0 and P'(0) = Xy + peg = 1,

1
hence ¢; = and co = ———, thus
_ A—p
B(t) = (M — o)
A—p
We have found that
— A
@' (t) = — (1) = ﬁ AN e p(0) = 1,

so we get by an integration,

! H A A
S T
o(t) g i
A 0 A I
:1 —Hti—/\ti R
+>\—ue A€ {A—u A—u}
A Iz
_ ut At
)\_Me /\_ue.

Summing up we have

1
A—p

(eM—ert)A.

A 7
pt At I
)\_Me /\_Me } +

exp(At) = (O + 004 = {

2) If u = A, then
P(t) = creM + cote™,  where 9(0) = ¢; =0,
and
P (t) = coe™ + coMteM, where ¢/ (0) = ¢y = 1.
Then
(t) = ter.
Now, ¢'(t) = —=A2¢(¢) and ¥(0) = 1, so

t
0

+ [e”]t =1—AeM 4 eM—1=(1-At)eM

¢
pt)=1- )\2/0 e dr =1—\ [Te’\T] 0

Summing up we get

exp(At) = () I+(H)A = (1—-\t)eMT+teMA.
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Calculus 4c-4 Cayley-Hamilton’s theorem

Example 4.6 Let A be a (2 x 2) matriz, the characteristic polynomial of which has the root \ of
multiplicity 2. Compute exp(At) by using that

exp(At) = exp(MI4 (A —AI)t) = e exp((A—AI)t).
When A is a double root, then the characteristic polynomial is (R — \)2, and it follows from either
Cayley-Hamilton’s theorem or Example 4.3 that

(A - \I)? =0.
Then

exp((A—AD)t) =T+ (A —AD)t+ %(A ST = T4 (A — AD)E 40 = (1 — AT+ £A,
n=2

and hence
exp(At) = eMexp((A — MI)t) = (1 — Xt)eMI + teMA,

cf. the result of Example 4.5 (2).

Example 4.7 Let A be a (2 x 2) matriz, the characteristic polynomial of which has the root \ of
multiplicity 2. Prove that

B (t) = M+ teM(A — AI)
is a solution of

d®

and conclude that

exp(At) = eMI + teM (A — AI).

Since
% =AML+ (1 4+ M)eM(A — AI) = —A%teMT + (1 + At)eMA
and
A®(t) = eMA+teM(A - M)A - M+ M) = eMA + MM (A — M)

= 2NN+ (1+ M)eMA,
it follows that

d®
— = Ad().
o (t)

Since

P0)=T+0-"(A—-\I)=1,

Download free books at BookBooN.com

94



Please click the advert

Calculus 4c-4 Cayley-Hamilton’s theorem

the initial conditions are also fulfilled. Due to the uniqueness the only solution is exp(At), so

exp(At) = eMI + teM(A — A).

Example 4.8 Let A be a (3 x 3) matriz, the characteristic polynomial of which p(z) = (x — \)® has
the root X of multiplicity 3.

1) Prove that p(A) := (A — \I)® = 0.
2) Let

1
O(t) = M+ 1™ (A = M) + 5 12 (A = AD™.

Prove that ®(t) = exp(At).

1) This follows immediately form Cayley-Hamilton’s theorem.
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Calculus 4c-4 Cayley-Hamilton’s theorem

2) Clearly, @(0) = I. Then we just check,

% = AeMI4 (1) e M (AN + (t+% t2> (A—\I)?
and
1
AdD(t) = eMA =M+ AI) +teM(A - AI)(A — AA + AI) + 5 t2eM(A — MXI)2(A — AT+ AI)

AeMT + M (A=) + Me (A —N)
A 1
He”(AfAI)%rg t2eM(A—NI)? + 3 t2eM (A -3

A
= AMI+(1+M)eM) (A=) + <t+5 t2> (A-XI)? +0,

hence ®(t) also satisfies the matrix differential equation

L
T =A®(D),  20)=1L

Now, the exponential matrix is the unique solution of this matrix differential equation, so we
conclude that

1
exp(At) = ®(t) = e’\tIthe)‘t(Af)\I)Jri t2eM (A -T2

Example 4.9 Let A be a (3 x 3) matriz, the characteristic polynomial of which p(z) = (x—\)%(z — )
has a double root A and a simple real root pu(# \).

1) Prove that
p(A) := (A — AXI)*(A — puI) = 0.

2) Prove that

—e)‘t 6)‘t eAt eut _
(1) = (o ga (A DA + 5 (A=) + ;_M(A—MI)(A—NIH O—p)?

s a solution of

(A—)I)?

% —A®(), B0 =1,

and then conclude that ®(t) = exp(At).

1) This follows immediately from Cayley-Hamilton’s theorem.
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2) We get by differentiation,

% = {ﬁ—i—ﬁ}e”(A—)\I)(A—uI)jt )\:ue)‘t(A—uI)
~I—ﬁte’\t(A—/\I)(A—uI) + ﬁe“tm—u)?,
which should be compared with
e/\t e)\t
Ad(t) = —W(A—AI)(A—M)(A—AI—MI) + )\_M(A—NI)(A—)\I—I—)\I)
4t (A—AT)(A — ) (A ALEAT) + — (A= AD?(A— I 4 ),
A—p (A—p)?

where we have used that all matrices commute. Now,
(A —AD*(A — pI) =0,
so this expression is reduced to

Ad(t) = (/\:2)2 M(A-N)(A—pul) +

A At
eM(A—ul) —
— (A—pI)

1 At
o (A AD (A—p)

At o o ut o 2
+3 ot A DAL+ e (AAD?,
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It follows by the comparison that ®(¢) satisfies the matrix differential equation

dP
Since
1 1 1 )
B(0) = o pAADA—D) + 1 (A—pD) + s (A-AT)
1 1
1 1 A=
_ ——)\_N(A—/\I) + 5 (A—pl) = 5oL

it follows that ®(t) fulfils the same initial conditions as exp(At). Since this solution is unique, we

conclude that

®(t) = exp(At).

Example 4.10 Let A be an (n X n) matriz, the characteristic polynomial p(x) has A as an n-tuple

r00t.

1) Prove that p(A) := (A — AXI)™" = 0.

Hint: Apply a coordinate transformation S, such that A = SAS™, where A is an upper triangular

matrixz with only A\s in the diagonal.

2) Prove that

n—1
exp(At) = eMexp((A — MI)t) = eMI + Z
j=1

1) By using the hint we get

1 .
—tleM(A = AT
4!

2

(A = AI)" = (SAS™! — A"SIS™H)" = S"(A — AI)"S™™.

Now, A — Al is an upper triangular matrix with only zeros in the diagonal. Hence, (A — AI)™ = 0,

and the claim is proved.

2) Since A and I commute, and
(A= AI)7 = (A-MD)"(A-AI))"" =0

it follows that

exp(At) = exp(AIt + (A — AI)t) = M
1 . .
= M Z (A=Al = e
=0

for j > n,

exp((A — AI)¢)
i ,i,tj(A — AI).

j=0"7"
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Example 4.11 Let A be an (n X n) matriz, the characteristic polynomial of which p(x) has the n
mutually different eigenvalues \1,. .., \n, everyone of multiplicity 1.

1) Prove that p(A) := [[j_, (A — \;I) = 0.

2) Let q(x) be the polynomial of degree grad n — 1 defined by

n n

glx) =)

J=1 k=1
k#j

I*)\k
Aj — A\

Prove that g(A\;) =1 for j =1,...,n, and conclude that ¢(x) = 1 identically.
3) Conclude from (2) that

1
aA) =3 (Il = (A-MD =1
V=

4) Prove that

n

(t):=> <[] ¥ iAk (A — A ) § et

Jj=1

s a solution of

% —A®({), B0 =1

and conclude that

n

- 1
exp(At) =Y <[] (A=) et
LN k

=S
1) There exists a coordinate transformation S, such that
A =SAS™!,
where A is a diagonal matrix with the diagonal elements \; and zeros outside the diagonal. Then
p(A)=8" ¢ [[(A=\T) ST =0,
j=1

because A — A;I only contains elements # 0 in the diagonal, and because the j-th diagonal element
is also 0. Since j goes through {1,...,n}, it follows that the product matrix is 0.
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2) When we put « = \j;, then

n

a(Ajo) = Z

=1

n

)‘jo — A
N —

H}n Ajo = Ak
k#j

k=1
k#3jo

Clearly, the polynomial ¢(2) — 1 has at most degree n — 1, and since it has n zeros, A1, ...

)‘jo — A

=1

A, We

must have ¢(x) — 1 = 0 identically, so ¢(z) = 1 identically.

3) It follows immediately from = — A and 1 — I that

n

G |
a@)=> [l —A-MDp=t
G=1 | wer Y k
k#j
4) Then by (3),
n n 1
®(0) = A-X\I) 3 =qA)=1
© =2 T =542 p = a(a)
7 ez
Furthermore,
A =) N ‘o
— = A — N\ I g
dt Z H Aj _)\k( kD) e
Jj=1 k=1
k#j
and
AB(t) = HA__A (A = \T) p (A — NI+ N\T)eM?
Sl
- - Aj A AP
= A —\I = —.
0+Z HAj*)\k( )\k) e 7
Jj=1 1’5=3

Since ®(t) and exp(At) fulfil the same differential equation and same initial conditions, and since

the solution is unique, we conclude that

n n

exp(At) = ®(t) =

Jj=1

1
N — M

(A=A

k=1

kg

it
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Example 4.12 Compute exp(At) for
wa=(g1) @a=(535) ea=(1,)

1) The characteristic polynomial is (A — 1), where A = 1 is a double root. Then it follows from
Example 4.7 that

t t t gt
ot t _ o € 0 0 te o & te
exp(At) = e'T+te' (A I)—<0 et>+<0 0)—(0 et)'

2) The characteristic polynomial is

- 1
-2 3=

‘ =AA=3)+2=A=3 +2 = (A—1)(A-2).

where A = 1 and A = 2 are simple roots. We get by using the formula of Example 4.11 that

1 t 1 o0 _ (2 -1\ 4 -1 1\ o
exp(At) E(A—Ql)e —l—ﬁ(A—I)e —(2 _1>e—|— 5 o )€

2et _ 2t o2t gt

et —2e%t 22t — et
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Calculus 4c-4 Cayley-Hamilton’s theorem

3) The characteristic polynomial is

‘ =AA=2)+1 =X\ —2X+1 = (A—1)%

-2 1
-1 2—-A

where A = 1 is a double root. Then by Example 4.7,

o A oy t(1 0 cf =t t\ _ [ (1—=t)et  te
exp(At) = e'T+te' (A I)—e<0 1>+e(_t t>_< gt (148t )

Example 4.13 Compute exp(At) for

o O =
O = =
N OO

110
M A=|010], (2 A=
00 1

1) Clearly, A =1 is a root of multiplicity 3, hence by Example 4.8,

exp(At) = e'T+te'(A 1)

0
1
t

+

~
[V
®
o~
oS O O
o O O
S O O

1

= €| o
0 0

et te

= 0 €
0 0 e

0
0
1
0
0

2) Clearly, A =1 is a double root, and p = 2 is a simple root. It then follows from Example 4.9 that

et et

tet 62t
A—T)(A -21 A —1)?
+1_2( )( )+(1_2)2( )
01 0 -1 1 0 -1 1 0
= —(t+Def{ 0 0 0 0 -1 0|—=€e"|l 0 =10
0 0 1 0 0 0 0 0 0
010 01 0
+e? 10 0 0 000
0 0 1 00 1
et tet 0
= 0 e 0 .
0 0 &%
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Calculus 4c-4 Cayley-Hamilton’s theorem

Example 4.14 Compute exp(At) for

0 1 0
A= -4 7 -2
-5 7 -1

First we find the characteristic polynomial

-2 1 0
-4 T-A 2 = AA-T)A+1)+10—4(A+1)— 14X
-5 7T =)

= AH6AZHTA+10—4N—4— 14\ = D3 +6X2—11)\+6
= —(A=1D(A=2)(A-3).

The eigenvalues are A = 1, 2, 3. They are all simple.

The equations of the eigenvectors are

—A\x1 + X2 =0,

T2 = )‘xla
—dxy 4+ (7T — N)xg — 223 =0, dvs. N5

Tr3 = )\+1 xIq.

—bx1 4+ Twg — (A 4+ 1)zg =0,

If A =1, then we can choose the eigenvector (1,1,1).
If A =2, then we can choose the eigenvector (1,2, 3).
If A = 3, then we can choose the eigenvector (1,3,4).

The complete solution of the corresponding system of differential equations is

1 1 1 et et 3t c1
x=cre [ 1 | +ee®| 2 |+ | 3| =1 et 2e* 3e3t Co
1 3 4 et 3e?t 4¢3t Cs

Hence a fundamental matrix is

et e et 1 1 1
()= e 22 3% |, med®0)=|1 2 3
et 3e? 4e¥ 1 3 4
Here,
1 1 1 1 0 0
det®(0)=|1 2 3|=|11 1]|=-1
1 3 4 1 2 1
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Calculus 4c-4 Cayley-Hamilton’s theorem

Finally, we get

et et et 1 1 -1
exp(At) = ®)®0) = | et X 3 1 -3 2
et 3e?  4e3t -1 2 -1

Clae2t Bt ot 302003t ot 9.2t 3t
= et +2e? —3e% et —6e? +6e3  —ef +4e?t —3e3t
et +3e2t —4e3t et —09e2t 483t et 4 Get —4e3?

Example 4.15 Compute exp(At) for

2 -3 2
A=|2 -5 4
3 =9 7

The characteristic polynomial is

1-A -3 2 2—A -3 2 2—A -3 2
2 —5—=A 4 = 20—-2 1-2X 0 =(\=1) 2 -1 0
3 -9 7T—A 1 —4+X 3-A 1 —44+X 3-A

= A-D{A-2)(3-\) +4X—16+2— 61+ 18}

(A= D{(A—2)(3— ) — 2\ + 4}

= A=DA=2)1 =X =-A-1)32*\-2).

Clearly, A = 1 is a double root, and p = 2 is a simple root. Then by Example 4.9,

e>\t e>\t
exp(At) = -— e (A = AI)(A — puI) + )\_M(A — uI)
teMt ettt
+/\_H(A —AI)(A — puI) + SEmE (A — \I)?

= —(1+t)e'(A-T)(A — 2I) — e’ (A — 2I) + e* (A —T)?
= —e'A(A—2I)—te' (A—TI)(A—2I)+e*(A—T)?

= - {(A-T)* I} —te' {(A-I)>— (A—T)} +e*(A-T)2.

A small computation gives

1 -3 2 1 -3 2 1 -3 2
(A-T)*=[2 -6 4 2 6 4]=|2 -6 4]|=A-1
3 -9 6 3 -9 6 3 -9 6
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Calculus 4c-4 Cayley-Hamilton’s theorem

Then by insertion,

0 -3 2 1 -3 2
exp(At) = —e'(A-2I)—te'0+e*(A-T)=—¢"| 2 -7 4 |+e*[2 —6 4
3 -9 5 3 -9 6
e?t 3et —3e?t 2%t —2¢!
= 2e2t —2e! Tel —6e?t 4e —4e!
3e2t—3e! 9e! —9e?!  6e?! —5el
Example 4.16 Compute exp(At) for
1 -1 1
A= -2 4 -1
-3 5 -1
The characteristic polynomial is
1-x -1 1 A—1 1 —1
-2 4= —1 = — 2 A—4 1
-3 5 —1-A 3 -5 A+1

—{A=1D)(A=4)(A+1)+3+10+3A—4)—2(A+1)+5(A—1)}
—{(A=1)(A=4)(A\+1)+61—6}

= —A-DA-3+2)=-(A-1)2(A-2).

We see that A = 1 is a double root and that © = 2 is a simple root. Then by Example 4.9 using the
reductions from Example 4.15 (the same polynomial),

exp(At) = ' {(A-I)? I} —te' {(A—I)> —(A—TI)} +e* (A-T1)%

It therefore follows from

0 -1 1 0 -1 1 -1 2 -1
(A-T)*=[ -2 3 -1 -2 3 —-1]=|-3 6 -3
-3 5 =2 -3 5 -2 —4 8 —4
that
-2 2 -1 -1 3 -2 -1 2 -1
exp(At) = —'| -3 5 -3 |—tef| -1 3 —2 | +e*| -3 6 -3
—4 8 -5 -1 3 =2 —4 8 —4

(2+t)et —e?t  —(2+3t)et +2e2t  (142t)e! —e?!

(3+t)et —3e?t  —(5+3t)e! +6e*  (3+2t)e! —3e?

(4+t)et —4e?t  —~(8+3t)el +8e*  (5+2t)e! —4e?
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